Advertisement

Sintering behaviour and microwave dielectric properties of MgO/Eu2O3-doped 0.65CaTiO3–0.35SmAlO3 ceramics

  • Yi Chang
  • Liming Zhang
  • Miao Xin
  • Xianfu Luo
  • Luchao Ren
  • Hongqing ZhouEmail author
Article
  • 14 Downloads

Abstract

0.65CaTiO3–0.35SmAlO3 ceramics (CTSA) were synthesized by the conventional solid-state method. To illustrate the effect of MgO/Eu2O3 additives and sintering temperatures on the dielectric properties of the CTSA ceramics, we performed qualitative and quantitative analyses. XRD analysis revealed that the perovskite phase was the main phase and a second phase Ca3Al2O6 appeared with steadily increasing Eu2O3 content in CTSA ceramics. The appropriate ratio of MgO/Eu2O3 additives resulted in a dense microstructure and excellent microwave dielectric properties, and lowered the sintering temperature from 1500 to 1315 °C. Excellent microwave dielectric properties of εr = 45.32, Q × f = 43,600 GHz (at 5.0 GHz), and τf= − 1.1 ppm/°C were attained for 0.65CaTiO3–0.35SmAlO3 ceramics with 0.5 wt% MgO and 0.2 wt% Eu2O3 additives sintered at 1315 °C for 4 h.

Notes

Acknowledgements

The authors are grateful to the support of Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites.

References

  1. 1.
    H.C. Xiang, Y. Bai, C.C. Li et al., Ceram. Int. 44(9), 10824 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.Z. Hao, Q.L. Zhang, J. Zhang et al., J. Mater. Chem. 22(45), 23885 (2012)CrossRefGoogle Scholar
  3. 3.
    L. Fang, Z.H. Wei, C.X. Su et al., Ceram. Int. 40(10), 16835 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Suvorov, M. Valant, B. Jančar et al., Acta Chim. Slov. 48(1), 87 (2001)Google Scholar
  5. 5.
    F.F. Ning, L. Gan, S.F. Yuan, Z.M. Qi et al., J. Alloy. Compd. 729, 742 (2017)CrossRefGoogle Scholar
  6. 6.
    Z.M. Dou, J. Jiang, G. Wang et al., Ceram. Int. 42(6), 6743 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Iqbal, H.X. Liu, H. Hao et al., Ceram. Int. 43(16), 14156 (2017)CrossRefGoogle Scholar
  8. 8.
    J.J. Qu, F. Liu, X. Wei et al., Bull. Mater. Sci. 39(7), 1645 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.M. Dou, G. Wang, J. Jiang et al., J. Adv. Ceram. 6(1), 20 (2017)CrossRefGoogle Scholar
  10. 10.
    X.Y. Yang, X.H. Wang, L. Li et al., Mater. Res. Bull. 67, 226 (2015)CrossRefGoogle Scholar
  11. 11.
    W.T. Xie, Q.X. Jiang, Q.L. Cao et al., Ceram. Int. 42(15), 16552 (2016)CrossRefGoogle Scholar
  12. 12.
    J.C. Liu, B.L. Wu, J. Alloy. Compd. 695, 2324 (2017)CrossRefGoogle Scholar
  13. 13.
    Q.L. Sun, H.Q. Zhou, L.S. Hu et al., J. Mater. Sci.: Mater. Electron. 27(8), 7750 (2016)Google Scholar
  14. 14.
    R.D. Shannon, J. Appl. Phys. 73(1), 348 (1993)CrossRefGoogle Scholar
  15. 15.
    L.S. Hu, H.Q. Zhou, Q.L. Sun et al., J. Mater. Sci.: Mater. Electron. 27(12), 12834 (2016)Google Scholar
  16. 16.
    M.Z. Dang, H.S. Ren, X.G. Yao et al., J. Am. Ceram. Soc. 1019(7), 3026 (2018)CrossRefGoogle Scholar
  17. 17.
    L.X. Pang, D. Zhou, Ceram. Int. 39(4), 1127 (2019)Google Scholar
  18. 18.
    L.X. Li, S. Li, Z.D. Gao et al., J. Mater. Sci.: Mater. Electron. 26(7), 5037 (2015)Google Scholar
  19. 19.
    W. Gong, B. Ullah, W. Lei et al., Ceram. Int. 43(3), 3051 (2017)CrossRefGoogle Scholar
  20. 20.
    L.Z. Wang, L.X. Wang, Z.F. Wang et al., J. Mater. Sci.: Mater. Electron. 27(4), 3929 (2016)Google Scholar
  21. 21.
    D.D. Khalyavin, A.N. Salak, A.M.R. Senos et al., J. Am. Ceram. Soc. 89(5), 1721 (2006)CrossRefGoogle Scholar
  22. 22.
    Y.M. Lai, X.L. Tang, L. Huang et al., J. Am. Ceram. Soc. 38(4), 1508 (2018)CrossRefGoogle Scholar
  23. 23.
    L.F. Xu, C. Mao, V.V. Marchenkov et al., Phys. Lett. A 382(39), 2861 (2018)CrossRefGoogle Scholar
  24. 24.
    R. Guillaume, M. Sylvain, B. Yohann et al., Ceram. Int. 44(13), 15228 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjingChina

Personalised recommendations