Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation

  • Yongyang Chen
  • Yonggang Liu
  • Xin Xie
  • Chen Li
  • Yushan Si
  • Menghan Zhang
  • Qishe YanEmail author


A series of flower-like BiVO4/BiOI core/shell composites were synthesized by depositing BiOI irregular nanosheets on the surface of sphere-like BiVO4 particles via an in situ precipitation method. Tetracycline was selected to evaluate the photocatalytic activity under visible-light irradiation. The samples were characterized by series measurements, which the SEM and TEM results showed that the flower-like BiVO4/BiOI photocatalysts were fabricated. The BiVO4/BiOI (V: I = 0.1) composite exhibited the highest excellent photocatalytic activity and superior adsorption capability. The results could be ascribed to the p–n junction, close core/shell heterostructure and high specific surface area, which promoted the separation and transfer of photogenerated electron–hole pairs. In addition, the radical trapping experiments revealed that the O2 and h+ were the main active species to the photodegradation of tetracycline in the system. This work provides a simple method to design the core/shell structure photocatalysts with excellent photocatalytic performance and adsorption capability for removal antibiotic pollutants.



  1. 1.
    J.L. Liu, M.H. Wong, Environ. Int. 59, 208–224 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Daghrir, P. Drogui, Environ. Chem. Lett. 11, 209–227 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Gao, M. Munir, I. Xagoraraki, Sci. Total Environ. 421–422, 173–183 (2012)CrossRefGoogle Scholar
  4. 4.
    Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49, 6772–6782 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 209–210, 137–145 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, D. Fatta-Kassinos, D.D. Dionysiou, Appl. Catal. B 134–135, 83–92 (2013)CrossRefGoogle Scholar
  7. 7.
    X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Chemosphere 92, 925–932 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Appl. Catal. B 200, 330–342 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Yuan, L. Jiang, X. Chen, L. Leng, H. Wang, Z. Wu, T. Xiong, J. Liang, G. Zeng, Environ. Sci. Nano 4(2017), 2175–2185 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Wang, Y. Liang, L. Liu, J. Hu, P. Wu, W. Cui, Appl. Catal. B 208, 22–34 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Liu, Y. Xue, J. Zhang, B. Han, J. Zhang, X. Suo, L. Mu, H. Shi, Environ. Sci. Nano 4, 255–264 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, C. Lin, H. Bi, Y. Liu, Q. Yan, Appl. Surf. Sci. 392, 701–707 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Shen, J. Wang, J. Jiang, B. Luo, B. Mao, W. Shi, Chem. Eng. J. 313, 508–517 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Ochiai, A. Fujishima, J. Photochem. Photobiol. C 13, 247–262 (2012)CrossRefGoogle Scholar
  15. 15.
    S.-Y. Lee, S.-J. Park, J. Ind. Eng. Chem. 19, 1761–1769 (2013)CrossRefGoogle Scholar
  16. 16.
    S.G. Babu, R. Vinoth, D.P. Kumar, M.V. Shankar, H.L. Chou, K. Vinodgopal, B. Neppolian, Nanoscale 7, 7849–7857 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Qian, P.A. Greaney, S. Fowler, S.-K. Chiu, A.M. Goforth, J. Jiao, ACS Sustain. Chem. Eng. 2, 1802–1810 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Tang, R. Wang, Y. Yang, D. Yan, X. Xiang, ACS Appl. Mater. Interfaces 8, 19446–19455 (2016)CrossRefGoogle Scholar
  19. 19.
    W.J. Jo, J.W. Jang, K.J. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P. Parmar, J.S. Lee, Angew. Chem. Int. Ed. Engl. 51, 3147–3151 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Dong, J. Feng, Y. Li, L. Hu, M. Liu, Y. Wang, Y. Pi, J. Sun, J. Sun, Appl. Catal. B 152–153, 413–424 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B 170–171, 206–214 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang, G. Zeng, ACS Appl. Mater. Interfaces 8, 32887–32900 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Chen, Q. Yang, Y. Wang, J. Zhao, D. Wang, X. Li, Z. Guo, H. Wang, Y. Deng, C. Niu, G. Zeng, Appl. Catal. B 205, 133–147 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Xie, Y. Liu, X. Dong, C. Lin, X. Wen, Q. Yan, Appl. Surf. Sci. 455, 742–747 (2018)CrossRefGoogle Scholar
  25. 25.
    W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Appl. Catal. B 134–135, 293–301 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Xiang, P. Ju, Y. Wang, Y. Sun, D. Zhang, J. Yu, Chem. Eng. J. 288, 264–275 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, J. Kong, J. Yuan, W. Zhao, X. Zhu, C. Sun, J. Xie, Chem. Eng. J. 331, 242–254 (2018)CrossRefGoogle Scholar
  28. 28.
    Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, S.-F. Yin, Chem. Eng. J. 255, 394–402 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Gu, W. Li, F. Wang, S. Wang, H. Zhou, H. Li, Appl. Catal. B 170–171, 186–194 (2015)CrossRefGoogle Scholar
  30. 30.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14, 1099–1105 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Gao, H.B. Wu, L. Zheng, Y. Zhong, Y. Hu, X.W. Lou, Angew. Chem. Int. Ed. Engl. 53, 5917–5921 (2014)CrossRefGoogle Scholar
  32. 32.
    K.-H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, Nano Energy 18, 222–231 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 137, 8356–8359 (2015)CrossRefGoogle Scholar
  34. 34.
    B. Lu, S. Zeng, C. Li, Y. Wang, X. Pan, L. Zhang, H. Mao, Y. Lu, Z. Ye, Carbon 132, 191–198 (2018)CrossRefGoogle Scholar
  35. 35.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009–2026 (2014)CrossRefGoogle Scholar
  36. 36.
    C. Chang, L. Zhu, S. Wang, X. Chu, L. Yue, ACS Appl. Mater. Interfaces 6, 5083–5093 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Tian, T. Yan, Z. Qiao, L. Wang, W. Li, J. You, B. Huang, Appl. Catal. B 209, 566–578 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, W. Li, Z. Sun, Q. Zhang, L. Wang, Z. Chen, J. Alloys Compd. 713, 78–86 (2017)CrossRefGoogle Scholar
  39. 39.
    W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, C. Sun, Appl. Catal. B 185, 242–252 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Gao, C. Guo, J. Lv, Q. Wang, Y. Zhang, S. Hou, J. Gao, J. Xu, Chem. Eng. J. 307, 1055–1065 (2017)CrossRefGoogle Scholar
  41. 41.
    S.S. Patil, D.P. Dubal, V.G. Deonikar, M.S. Tamboli, J.D. Ambekar, P. Gomez-Romero, S.S. Kolekar, B.B. Kale, D.R. Patil, ACS Appl. Mater. Interfaces 8, 31602–31610 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7, 482–492 (2015)CrossRefGoogle Scholar
  43. 43.
    T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751–6758 (2011)CrossRefGoogle Scholar
  44. 44.
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 4, 1781–1787 (2011)CrossRefGoogle Scholar
  45. 45.
    J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, J. Hazard. Mater. 217–218, 107–115 (2012)CrossRefGoogle Scholar
  46. 46.
    Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Environ. Sci. Technol. 46, 4042–4050 (2012)CrossRefGoogle Scholar
  47. 47.
    X.-J. Wen, C.-G. Niu, L. Zhang, G.-M. Zeng, ACS Sustain. Chem. Eng. 5, 5134–5147 (2017)CrossRefGoogle Scholar
  48. 48.
    W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, Dalton Trans. 43, 6735–6743 (2014)CrossRefGoogle Scholar
  49. 49.
    E. Aguilera-Ruiz, U.M. García-Pérez, M. de la Garza-Galván, P. Zambrano-Robledo, B. Bermúdez-Reyes, J. Peral, Appl. Surf. Sci. 328, 361–367 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institution of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations