A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties

  • Xue Li
  • Jianhua QianEmail author
  • Junhua Li
  • Jiasheng Xu
  • Jinjuan Xing
  • Lin Liu


Antimony-doped tin oxide (ATO) coated TiO2 (TiO2@ATO) conductive composites were synthesized by a sol–gel method using acetylacetone as the chelating agent in water based. As-synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electronic microscopy and high-resolution transmission electron microscopy, thermogravimetric analysis, ultraviolet–visible (UV–Vis) spectroscopy and Fourier transform infrared spectroscopy. The results showed that the optical band gap gradually decreases from 3.081 eV to 3.068 eV with the increase of antimony doping concentration. The optimal molar ratio of acetylacetone to metal ions was 4 while the water content was 50 mL. When the antimony doping concentration was 35 mol%, TiO2@ATO composite possessed the lowest resistivity of 4.5 Ω cm. ATO nanoparticles with an average particle size of 8.3 nm formed a shell of about 10 nm on the surface of TiO2. In addition, the corresponding formation mechanism of TiO2@ATO composite was proposed on the basis of the experimental analysis.



This work was financially supported by National Natural Science Foundation of China (21878024 and 21606023), the Innovation Team Project of Liaoning Province (LT2015001) and Scientific Public Welfare Research Foundation of Liaoning Province (20170054).


  1. 1.
    S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Appl. Surf. Sci. 286, 417–420 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Ren, G. Zhao, Y. Chen, Fabrication of textured SnO2:F thin films by spray pyrolysis. Appl. Surf. Sci. 258, 914–918 (2011)CrossRefGoogle Scholar
  3. 3.
    C. Hudaya, B.J. Jeon, J.K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl. Mater. Interfaces. 7, 57–61 (2015)CrossRefGoogle Scholar
  4. 4.
    C.L. Hsu, Y.C. Lu, Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 4, 5710–5717 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Gratzel, Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Lett. 12, 5431–5435 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Mazloom, F.E. Ghodsi, M. Gholami, Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J. Alloys Compd. 579, 384–393 (2013)CrossRefGoogle Scholar
  7. 7.
    J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15, 3296 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21, 3202–3209 (2009)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method. J. Mater. Sci. 25, 4524–4530 (2014)Google Scholar
  10. 10.
    H.Y.P. Hu, Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl. Clay. Sci. 48, 368–374 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Sladkevich, N. Kyi, J. Gun, P. Prikhodchenko, S. Ischuk, O. Lev, Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520, 152–158 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Hu, H. Yang, Polypropylene filled with kaolinite-based conductive powders. Appl. Clay. Sci. 83–84, 122–128 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Liu, Y. Wang, M. Ge, Q. Gao, One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: synthesis and applications. J. Mater. Sci. 29, 619–627 (2017)Google Scholar
  14. 14.
    Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37–42 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Outemzabet, N. Bouras, N. Kesri, Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films 515, 6518–6520 (2007)CrossRefGoogle Scholar
  16. 16.
    C.M.N. Naghavi, L. Dupont, J.B. Leriche, J.M. Tarascon, On the electrochromic properties of antimony–tin oxide thin films deposited by pulsed laser deposition. Solid State Ionics 156, 463–474 (2003)CrossRefGoogle Scholar
  17. 17.
    Y. Hu, H. Zhong, Y. Wang, L. Lu, H. Yang, TiO2/antimony-doped tin oxide: highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol. Energy Mater. Sol. Cells 174, 499–508 (2018)CrossRefGoogle Scholar
  18. 18.
    L.S. Wang, H.F. Lu, R.Y. Hong, W.G. Feng, Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol. 224, 124–128 (2012)CrossRefGoogle Scholar
  19. 19.
    S.S. Lekshmy, G.P. Daniel, K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Rodríguez García, Á. Reyes Carmona, I. Jiménez Morales, M. Blasco Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustain. Energy Fuels 2, 589–597 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles. Inorg. Chem. Commun. 7, 91–93 (2004)CrossRefGoogle Scholar
  22. 22.
    X. Zhong, B. Yang, X. Zhang, J. Jia, G. Yi, Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology 10, 365–370 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Li, J. Liu, J. Liang, X. Yu, D. Li, Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO2 microspheres. ACS Appl. Mater. Interfaces 7, 6574–6583 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.Q. Li, J.L. Wang, S.Y. Fu, S.G. Mei, J.M. Zhang, K. Yong, Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method. Mater. Res. Bull. 45, 677–681 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Liu, W. Ding, Y. Gu, W. Chai, Effect of Sb doping on the microstructure and optoelectrical properties of Sb-doped SnO2 films prepared by spin coating. Phys. Scr. 85, 065601 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A 396, 136–142 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Radecka, A. Wnuk, A. Trenczek Zajac, K. Schneider, K. Zakrzewska, TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int. J. Hydrog. Energy 40, 841–851 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Maeda, N. Murakami, T. Ohno, Dependence of activity of rutile titanium(IV) oxide powder for photocatalytic overall water splitting on structural properties. J. Phys. Chem. C 118, 9093–9100 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Xu, G. Yang, J. Liang, S. Ding, C. Tang, H. Yang, W. Yan, G. Yang, D. Yu, Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J. Mater. Chem. A 2, 116–122 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1−xSbxO2 nanoparticles. J. Mater. Sci. 28, 2183–2192 (2016)Google Scholar
  31. 31.
    J. Mazloom, F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 48, 1468–1476 (2013)CrossRefGoogle Scholar
  32. 32.
    A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Park, S.D. Seo, S. Lee, S.W. Seo, K.S. Park, C.W. Lee, D.W. Kim, K.S. Hong, Sb:SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 116, 21717–21726 (2012)CrossRefGoogle Scholar
  34. 34.
    V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol−gel procedure. Chem. Mater. 21, 5229–5236 (2009)CrossRefGoogle Scholar
  35. 35.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Sensing properties of sprayed antimony doped tin oxide thin films: solution molarity. J. Alloys Compd. 509, 3108–3115 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, T. Chen, Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochim. Acta 54, 3510–3515 (2009)CrossRefGoogle Scholar
  37. 37.
    J.P. Correa Baena, A.G. Agrios, Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl. Mater. Interfaces 6, 19127–19134 (2014)CrossRefGoogle Scholar
  38. 38.
    F. Montilla, A. De Battisti, S. Barison, S. Daolio, J.L. Va’zquez, Preparation and characterization of antimony-doped tin dioxide electrodes 3 XPS and SIMS characterization. J. Phys. Chem. B 108, 15976–15981 (2004)CrossRefGoogle Scholar
  39. 39.
    T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70, 993–999 (2009)CrossRefGoogle Scholar
  40. 40.
    A.M. Volosin, S. Sharma, C. Traverse, N. Newman, D.K. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks. J. Mater. Chem. 21, 13232 (2011)CrossRefGoogle Scholar
  41. 41.
    T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater. Lett. 63, 896–898 (2009)CrossRefGoogle Scholar
  42. 42.
    L.K. Dua, A. De, S. Chakraborty, P.K. Biswas, Study of spin coated high antimony content Sn–Sb oxide films on silica glass. Mater. Charact. 59, 578–586 (2008)CrossRefGoogle Scholar
  43. 43.
    L.C.C. Jeffrey, C.S. Wu, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor. J. Membr. Sci. 167, 253–261 (2000)CrossRefGoogle Scholar
  44. 44.
    S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25, 673–679 (2005)CrossRefGoogle Scholar
  45. 45.
    P. Hu, H. Yang, Sb–SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Phys. Chem. Miner. 39, 339–349 (2012)CrossRefGoogle Scholar
  46. 46.
    Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater. Chem. Phys. 133, 907–912 (2012)CrossRefGoogle Scholar
  47. 47.
    P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Appl. Clay. Sci. 55, 151–157 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xue Li
    • 1
  • Jianhua Qian
    • 1
    • 2
    Email author
  • Junhua Li
    • 3
  • Jiasheng Xu
    • 3
  • Jinjuan Xing
    • 3
  • Lin Liu
    • 3
  1. 1.Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, and Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning University of Petroleum and Chemical TechnologyFushunChina
  3. 3.Provincial Key Laboratory for Functional Compounds Synthesis and ApplicationBohai UniversityJinzhouChina

Personalised recommendations