A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature

  • Şemsettin Altındal
  • Ömer SevgiliEmail author
  • Yashar Azizian-KalandaraghEmail author


In this study, the Au/n-Si structures with and without (CoSO4–PVP) organic interlayer were fabricated on the same n-Si wafer and electrical characteristics of them were analyzed by using current, capacitance, and conductance measurements in forward and reverse bias voltages and experimental results were compared with each other. The values of ideality factory (n), zero-bias barrier height (ΦBo), and the rectifying ratio (RR at ± 3 V) for Au/n-Si and Au/(CoSO4–PVP)/n-Si structures were found as 2.453, 0.732 eV, 2.01 × 103 and 2.489, 0.799, 5.37 × 104 by using the I–V measurements, respectively. The RR of Au/(CoSO4–PVP)/n-Si structures at ± 3 V was 26.77 times higher than Au/n-Si structure. The concentration of donor-atoms (ND), Fermi energy (EF) and barrier height for these two structures were found as 15.06 × 1014 cm−3, 0.254 eV, 0.744 eV and 2.310 × 1014 cm−3, 0.303 eV, 1.010 eV from the C−2–V characteristics in the reverse bias region at 1 MHz in dark, respectively. These results show that the use of (CoSO4–PVP) polymer interface layer at Au/n-Si interface improves the performance of these structures. Additionally, a simple ultrasound-assisted method has been utilized to grown cobalt sulfide nanostructures. The morphological and structural analyses of them have been investigated by scanning electron-microscopy, and X-ray diffraction methods.



This research was supported by Gazi University Scientific Research Project (GU-BAP) with 05/2018-10 and 06/2018-5 numbers.


  1. 1.
    O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, Ş. Altindal, I. Uslu, Compos. Part B Eng. 98, 260 (2016)CrossRefGoogle Scholar
  2. 2.
    V. Rajagopal Reddy, V. Janardhanam, J. Won, C.-J. Choi, J. Colloid Interface Sci. 499, 180 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali, Ş. Altındal, M.A. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Mater. Sci. Semicond. Process. 86, 173 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 47, 6945 (2018)CrossRefGoogle Scholar
  5. 5.
    E.A. Akhlaghi, Y. Badali, Ş. Altindal, Y. Azizian-Kalandaragh, Phys. B Condens. Matter 546, 93 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Sharma, S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155 (2016)CrossRefGoogle Scholar
  7. 7.
    Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, Appl. Phys. A Mater. Sci. Process. 123, 560 (2017)CrossRefGoogle Scholar
  8. 8.
    I. Orak, A. Kocyigit, İ. Karteri, S. Uruş, J. Electron. Mater. 47, 6691 (2018)CrossRefGoogle Scholar
  9. 9.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey, New York, 1981)Google Scholar
  10. 10.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford University Press, London, 1988)Google Scholar
  11. 11.
    V. RajagopalReddy, V. Manjunath, V. Janardhanam, Y.H. Kil, C.J. Choi, J. Electron. Mater. 43, 3499 (2014)CrossRefGoogle Scholar
  12. 12.
    H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971)CrossRefGoogle Scholar
  13. 13.
    A. Kaya, Ö. Sevgili, Ş. Altındal, Int. J. Mod. Phys. B 28, 1450104 (2014)CrossRefGoogle Scholar
  14. 14.
    G. ErsözDemir, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 47, 6600 (2018)CrossRefGoogle Scholar
  15. 15.
    W. Cai, X. Gong, Y. Cao, Solar Energy Mater. Solar Cells 94, 114 (2010)CrossRefGoogle Scholar
  16. 16.
    M. SivaPratapReddy, K. Sreenu, V. RajagopalReddy, C. Park, J. Mater. Sci.: Mater. Electron. 28, 4847 (2017)Google Scholar
  17. 17.
    Y. Badali, A. Nikravan, Ş. Altındal, İ. Uslu, J. Electron. Mater. 47, 3510 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Zeyrek, E. Acaroǧlu, Ş. Altindal, S. Birdoǧan, M.M. Bülbül, Curr. Appl. Phys. 13, 1225 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Demirezen, Z. Sönmez, U. Aydemir, Ş. Altndal, Curr. Appl. Phys. 12, 266 (2012)CrossRefGoogle Scholar
  20. 20.
    U. Aydemir, I. Taşçioǧlu, Ş. Altindal, I. Uslu, Mater. Sci. Semicond. Process. 16, 1865 (2013)CrossRefGoogle Scholar
  21. 21.
    H.G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu, J. Mater. Sci.: Mater. Electron. 28, 7905 (2017)Google Scholar
  22. 22.
    S.A. Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci.: Mater. Electron. 28, 14040 (2017)Google Scholar
  23. 23.
    V.R. Reddy, Thin Solid Films 556, 300 (2014)CrossRefGoogle Scholar
  24. 24.
    I. Taşçoǧlu, U. Aydemir, Ş. Altndal, J. Appl. Phys. 108, 083710 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Demirezen, I. Orak, Y. Azizian-Kalandaragh, S. Altındal, J. Mater. Sci.: Mater. Electron. 28, 12967 (2017)Google Scholar
  26. 26.
    I. Taşçıoğlu, T. Özmen, H.M. Şağban, E. Yağlıoğlu, S. Altındal, J. Electron. Mater. 46, 2379 (2017)CrossRefGoogle Scholar
  27. 27.
    H.G. Çetinkaya, A. Kaya, Ş. Altındal, S. Koçyiğit, Can. J. Phys. 93, 1 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Han, X. Chen, Q. Wang, S.M. Alelyani, J. Qu, Sol. Energy 177, 387 (2019)CrossRefGoogle Scholar
  29. 29.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003)CrossRefGoogle Scholar
  30. 30.
    B.K. Pandey, A.K. Shahi, R.K. Swarnkar, R. Gopal, Sci. Adv. Mater. 4, 537 (2012)CrossRefGoogle Scholar
  31. 31.
    S.S. Devangamath, B. Lobo, Int. J. Polym. Anal. Charact. 23, 517 (2018)CrossRefGoogle Scholar
  32. 32.
    C. Kargl-Simard, J.H. Huang, A.M. Alfantazi, Miner. Eng. 16, 529 (2003)CrossRefGoogle Scholar
  33. 33.
    M. Pournaghdy, H. Aghaie, M. Monajjemi, M. Giahi, M.A. Bagherinia, J. Chem. Thermodyn. 42, 1494 (2010)CrossRefGoogle Scholar
  34. 34.
    H. Uslu, Ş. Altindal, S. Polat, H. Bayrak, E. Bacaksiz, J. Alloys Compd. 509, 5555 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Wagle, V. Shirodkar, Braz. J. Phys. 30, 380 (2000)Google Scholar
  36. 36.
    A. Bengi, U. Aydemir, Ş. Altindal, Y. Özen, S. Özçelik, J. Alloys Compd. 505, 628 (2010)CrossRefGoogle Scholar
  37. 37.
    C.N. Berglund, IEEE Trans. Electron Dev. 13, 701 (1966)CrossRefGoogle Scholar
  38. 38.
    Y.S. Ocak, M. Kulakci, T. Kılıçoğlu, R. Turan, K. Akkılıç, Synth. Met. 159, 1603 (2009)CrossRefGoogle Scholar
  39. 39.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  40. 40.
    A. BüyükbaşUluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 159 (2018)Google Scholar
  41. 41.
    E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)Google Scholar
  42. 42.
    M. Siad, A. Keffous, S. Mamma, Y. Belkacem, H. Menari, Appl. Surf. Sci. 236, 366 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesGazi UniversityAnkaraTurkey
  2. 2.Vocational School of Health ServicesBingöl UniversityBingölTurkey
  3. 3.Physics Department, Faculty of SciencesUniversity of Mohaghegh ArdabiliArdabilIran
  4. 4.Department of Engineering SciencesSabalan University of Advanced Technologies (SUAT)NaminIran

Personalised recommendations