Random laser action in dye-doped xerogel with inhomogeneous TiO2 nanoparticles distribution

  • L. F. SciutiEmail author
  • T. S. Gonçalves
  • N. B. Tomazio
  • A. S. S. de Camargo
  • C. R. Mendonça
  • L. De BoniEmail author


Rhodamine 6G-doped TEOS-derived xerogels containing different concentrations of TiO2 nanoparticles with average diameter of about 350 nm were designed to study random laser action. Due to the decantation of TiO2 nanoparticles during the sol–gel process, the obtained xerogels samples exhibits an inhomogeneous TiO2 distribution, with a higher concentration at one of the sample surfaces. By pumping the samples at each of the surfaces at a time with a ps-laser at 532 nm, differences in the emission behavior were observed. The higher concentration of TiO2 in one side of the sample, which occurs during its preparation, was shown to play an important role in the random laser energy threshold and emission spectra, depending on what side of the sample the excitation takes place. The difference in the laser threshold shows that the way scatterers are volumetrically distributed can increase or decrease the pump energy required for laser action.



The authors gratefully acknowledge financial support from CNPq, FAPESP 2016/20886-1 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.


  1. 1.
    V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835–840 (1968)Google Scholar
  2. 2.
    N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Laser action in strongly scattering media. Nature 368, 436–438 (1994)CrossRefGoogle Scholar
  3. 3.
    H. Cao et al., Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Liu et al., Random nanolasing in the anderson localized regime. Nat. Nanotechnol. 9, 285–289 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Tulek, R.C. Polson, Z.V. Vardeny, Naturally occurring resonators in random lasing of π-conjugated polymer films. Nat. Phys. 6, 303–310 (2010)CrossRefGoogle Scholar
  6. 6.
    R.M. Balachandran, D.P. Pacheco, N.M. Lawandy, Laser action in polymeric gain media containing scattering particles. Appl. Opt. 35, 640 (1996)CrossRefGoogle Scholar
  7. 7.
    J. Zhang et al., Random lasing and weak localization of light in transparent Nd3+ doped phosphate glass. Appl. Phys. Lett. 102, 021109 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355–359 (2012)CrossRefGoogle Scholar
  9. 9.
    B. Redding, S.F. Liew, R. Sarma, H. Cao, Compact spectrometer based on a disordered photonic chip. Nat. Photonics 7, 746–751 (2013)CrossRefGoogle Scholar
  10. 10.
    R.C. Polson, Z.V. Vardeny, Random lasing in human tissues. Appl. Phys. Lett. 85, 1289–1291 (2004)CrossRefGoogle Scholar
  11. 11.
    S.J. Marinho et al., Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Laser Phys. Lett. 12, 055801 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Murai, K. Fujita, J. Konishi, K. Hirao, K. Tanaka, Random lasing from localized modes in strongly scattering systems consisting of macroporous titania monoliths infiltrated with dye solution. Appl. Phys. Lett. 97, 031118 (2010)CrossRefGoogle Scholar
  13. 13.
    R.A.S. Ferreira, P.S. André, L.D. Carlos, Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Opt. Mater. (AMST) 32, 1397–1409 (2010)CrossRefGoogle Scholar
  14. 14.
    P. Judeinstein, C. Sanchez, Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)CrossRefGoogle Scholar
  15. 15.
    J.C. Altman, R.E. Stone, B. Dunn, F. Nishida, Solid-state laser using a rhodamine-doped silica gel compound. IEEE Photonics Technol. Lett. 3, 189–190 (1991)CrossRefGoogle Scholar
  16. 16.
    F. Luan et al., Lasing in nanocomposite random media. Nano Today 10, 168–192 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Cao, Lasing in random media. Waves Random Media 13, R1–R39 (2003)CrossRefGoogle Scholar
  18. 18.
    E. Ignesti et al., Experimental and theoretical investigation of statistical regimes in random laser emission. Phys. Rev. A 88, 033820 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Pierrat, R. Carminati, Threshold of random lasers in the incoherent transport regime. Phys. Rev. A 76, 023821 (2007)CrossRefGoogle Scholar
  20. 20.
    P.E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985)CrossRefGoogle Scholar
  21. 21.
    M.P. Van Albada, A. Lagendijk, Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985)CrossRefGoogle Scholar
  22. 22.
    J. Liu et al., Random nanolasing in the anderson localized regime. Nat. Nanotechnol. 9, 285 (2014)CrossRefGoogle Scholar
  23. 23.
    P. Pradhan, N. Kumar, Localization of light in coherently amplifying random media. Phys. Rev. B 50, 9644–9647 (1994)CrossRefGoogle Scholar
  24. 24.
    L.M.G. Abegão et al., Random laser emission from a rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Laser Phys. Lett. 14, 065801 (2017)CrossRefGoogle Scholar
  25. 25.
    N.U. Wetter et al., Dynamic random lasing in silica aerogel doped with rhodamine 6G. RSC Adv. (2018). Google Scholar
  26. 26.
    F.J. Al-Maliki, Detection of random laser action from silica xerogel matrices containing rhodamine 610 dye and titanium dioxide nanoparticles. Adv. Mater. Phys. Chem. 2, 110–115 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.São Carlos Institute of PhysicsUniversity of São PauloSão CarlosBrazil
  2. 2.Department of Materials Engineering, São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil

Personalised recommendations