Enhanced temperature stability and tailored electromechanical response in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoceramics through rare earth modification

  • Leijie Wang
  • Wangfeng BaiEmail author
  • Xinyu Zhao
  • Fei Wen
  • Lili Li
  • Wei Wu
  • Peng ZhengEmail author
  • Jiwei ZhaiEmail author


(Ba,Ca)(Zr,Ti)O3 piezoceramics are deemed as one of potential lead-free alternatives to commonly used lead-based piezoelectric ceramics because of their high piezoelectric properties. However, in the process of improving their electrical properties, it tends to cause significant deterioration of thermal, frequency, and fatigue stability for electromechanical response, which will impede the commercialization of piezoelectric materials. Herein, we designed a strategy using the rare earth to modify BCZT lead-free piezoceramics so as to solve the above mentioned challenges. In this work, for Ho-modified BCZT lead-free ceramics, we achieved not only high electromechanical response with Smax/Emax = 550 pm/V and large piezoelectric coefficient d33 = 521 pC/N, but also the enhanced temperature stability featured by < 2% variation for d33 in the general operating temperature range of 20 °C and 70 °C. In addition, large electrostrictive coefficient Q33 of 0.045 m4/C2 was also realized in this modified materials while still maintaining good temperature stability. More interestingly, this modified materials also performed excellent fatigue endurance, evidenced by < 3% variation for the remnant polarization (Pr) and Smax/Emax after 105 cycles. The complex impedance spectra verified that the boosted fatigue resistance was mainly attributed to the decrease of the defect density originating from the reduced oxygen vacancies. These results demonstrate that the introduction of rare earth into BCZT is an effective way to tailor temperature stability and electromechanical responses.



The authors would like to acknowledge the National Natural Science Foundation of China (Grant No. 51502067), Natural Science Foundation of Zhejiang Province (Grant No. LQ16E020004), key research and development projects of Zhejiang Province (Grant No. 2017C01056).


  1. 1.
    X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, J. Alloys Compd. 640, 128–133 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Li, W. Ma, J. Ma, X. Meng, B. Niu, Mater. Technol. 31, 18–23 (2016)CrossRefGoogle Scholar
  3. 3.
    I. Coondoo, N. Panwar, H. Amorín, V.E. Ramana, M. Algueró, A. Kholkin, S.E. Trolier-McKinstry, J. Am. Ceram. Soc. 98, 3127–3135 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Acosta, N. Novak, W. Jo, J. Rödel, Acta Mater. 80, 48–55 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Bao, C. Zhou, D. Xue, J. Gao, X. Ren, J. Phys. D 43, 465401 (2010)CrossRefGoogle Scholar
  6. 6.
    W. Bai, D. Chen, J. Zhang, J. Zhong, M. Ding, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 3598–3608 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, J. Eur. Ceram. Soc. 37, 877–882 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Hao, Z. Xu, R. Chu, S. Chu, W. Li, P. Fu, J. Du, C. Hu, Mater. Lett. 193, 138–141 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Zhang, J. Wu, J. Mater. Sci-Mater. Electron. 30, 1663–1669 (2018)CrossRefGoogle Scholar
  10. 10.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  11. 11.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Alloys Compd. 583, 305–308 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, M. Narayanan, J. Am. Ceram. Soc. 94, 3181–3183 (2011)CrossRefGoogle Scholar
  13. 13.
    W. Li, J. Hao, W. Bai, Z. Xu, R. Chu, J. Zhai, J. Alloys. Compd. 531, 46–49 (2012)CrossRefGoogle Scholar
  14. 14.
    W. Li, Z. Wang, J. Hao, P. Fu, J. Du, R. Chu, Z. Xu, J. Mater. Chem. C 6, 11312–11319 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Lu, L. Liu, J. Lin, W. Yang, W. Zheng, L. Weng, X. Zhang, Ceram. Int. 43, 16348–16355 (2017)CrossRefGoogle Scholar
  16. 16.
    Q. Lin, M. Jiang, D. Lin, Q. Zheng, X. Wu, X. Fan, J. Mater. Sci.- Mater. Electron. 24, 734–739 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Gao, Q. Li, H. Liu, J. Shim, Q. Yan, Y. Zhang, X. Chu, Ceram. Int. 41, 2497–2501 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Cui, C. Yuan, X. Liu, X. Zhao, X. Shan, J. Mater. Sci.-Mater. Electron. 24, 654–657 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Tian, L. Wei, X. Chao, Z. Liu, Z. Yang, D. Damjanovic, J. Am. Ceram. Soc. 96, 496–502 (2013)Google Scholar
  20. 20.
    H.I. Humburg, M. Acosta, W. Jo, K.G. Webber, J. Rödel, J. Eur. Ceram. Soc. 35, 1209–1217 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Hao, W. Bai, W. Li, J. Zhai, C. Randall, J. Am. Ceram. Soc. 95, 1998–2006 (2012)CrossRefGoogle Scholar
  22. 22.
    G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619–1625 (1985)CrossRefGoogle Scholar
  23. 23.
    I. Coondoo, S.K. Agarwal, A.K. Jha, Mater. Res. Bull. 44, 1288–1292 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Chen, Y. Li, J. Zeng, L. Zheng, C.H. Park, G. Li, D. Damjanovic, J. Am. Ceram. Soc. 99, 2170–2174 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, G. Liu, ACS Appl. Mater. Interfaces 8, 31109–31119 (2016)CrossRefGoogle Scholar
  26. 26.
    W. Bai, L. Wang, P. Zheng, F. Wen, L. Li, J. Zhai, Z. Ji, Ceram. Int. 44, 16040–16050 (2018)CrossRefGoogle Scholar
  27. 27.
    M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Acta Mater. 122, 344–351 (2017)CrossRefGoogle Scholar
  28. 28.
    F.-Z. Yao, Q. Yu, K. Wang, Q. Li, J.-F. Li, RSC Adv. 4, 20062–20068 (2014)CrossRefGoogle Scholar
  29. 29.
    J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, J. Mater. Chem. C 3, 8780–8787 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, J. Alloys Comp. 677, 96–104 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Curr. Appl. Phys. 11, S120–S123 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Tian, X. Chao, L. Wei, P. Liang, Z. Yang, J. Appl. Phys. 113, 184107 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Zuo, H. Qi, J. Fu, J. Li, M. Shi, Y. Xu, Appl. Phys. Lett. 108, 232904 (2016)CrossRefGoogle Scholar
  34. 34.
    F. Li, L. Jin, Z. Xu, D. Wang, S. Zhang, Appl. Phys. Lett. 102, 152910 (2013)CrossRefGoogle Scholar
  35. 35.
    P.M. Weaver, M.G. Cain, M. Stewart, Appl. Phys. Lett. 96, 142905 (2010)CrossRefGoogle Scholar
  36. 36.
    G.H. Haertling, Ferroelectrics 75, 25–55 (1987)CrossRefGoogle Scholar
  37. 37.
    S.-T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716–4720 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Li, F. Wang, X. Qin, M. Xu, W. Shi, Appl. Phys. A 104, 117–122 (2010)CrossRefGoogle Scholar
  39. 39.
    F. Li, L. Jin, R. Guo, Appl. Phys. Lett. 105, 232903 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, J. Appl. Phys. 98, 014109 (2005)CrossRefGoogle Scholar
  41. 41.
    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35, 2501–2512 (2015)CrossRefGoogle Scholar
  42. 42.
    D. Zheng, R. Zuo, S. Zhang, J. Am. Ceram. Soc. 98, 3670–3672 (2015)CrossRefGoogle Scholar
  43. 43.
    J.Y. Li, R.C. Rogan, E. Ustundag, K. Bhattacharya, Nat. Mater. 4, 776–781 (2005)CrossRefGoogle Scholar
  44. 44.
    X. Yan, M. Zheng, S. Sun, M. Zhu, Y. Hou, Dalton Trans. 47, 9257–9266 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Zheng, Y. Hou, J. Fu, X. Fan, M. Zhu, H. Yan, Mater. Chem. Phys. 138, 358–365 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronics and InformationHangzhou Dianzi UniversityHangzhouChina
  2. 2.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
  3. 3.Functional Materials Research Laboratory, School of Materials Science & EngineeringTongji UniversityShanghaiChina

Personalised recommendations