Enhanced luminescence properties of Eu3+ activated CaGd2(WO4)4 red-emitting phosphors with Mo6+ doping

  • Guifang LiEmail author
  • Hongyu Chai
  • Qian Yang
  • Yunge WeiEmail author


Novel CaGd2(WO4)4(1−x)(MoO4)4x:Eu3+ red phosphors were successfully prepared through a solid state method. The influence of molybdenum ions doping on the crystal structure and luminescence properties of CaGd2(WO4)4:Eu3+ were characterized in detail. Mo6+ ions are introduced into CaGd2(WO4)4 to induce the structure transformation from monoclinic scheelite with superspace group I2/b to tetragonal scheelite with superspace group I41/a. Under UV light excitation, CaGd2(WO4)4(1−x)(MoO4)4x:Eu3+ phosphors exhibit the strongest red emission dominated by the 5D0 → 7F2 transition of Eu3+ at 617 nm. The luminescent properties of Eu3+ are improved significantly when Mo6+ ions are introduced into the host. In the case of x = 0.1, the emission intensity of CaGd2(WO4)3.6(MoO4)0.4:Eu3+ phosphor is enhanced by 50% compared to undoped one, and the colour purity and quantum yield are calculated to be 95.3% and 53.5%, respectively. Meanwhile, the as-prepared phosphor exhibited unusual temperature sensitive emission, and the thermal quenching process was explained resultantly through the configurational coordinate diagram. Furthermore, to better understand the red emission behavior, the Judd–Oflet theory was employed to analyze the radiative transition intensity parameters of CaGd2(WO4)4 phosphors.



This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. JB171405) and the National Natural Science Foundation of Shaanxi Province (Grant No. 2018JM5151).


  1. 1.
    S. Nasir, A. Tanaka, S. Yoshiara, A. Kato, Luminescence properties of Li2SrSiO4:Eu2+ silicate yellow phosphors with high thermal stability for high-power efficiency white LED application. J. Lumin. 207, 22–28 (2019)CrossRefGoogle Scholar
  2. 2.
    H. Guo, X. Huang, Low-temperature solid-state synthesis and photoluminescence properties of novel high-brightness and thermal-stable Eu3+-activated Na2Lu(MoO4)(PO4) red-emitting phosphors for near-UV-excited white LEDs. J. Alloys Compd. 764, 809–814 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Liu, Z. Song, Y. Kong, S. Wang, S. Zhang, Z. Xia, Q. Liu, Effects of full-range Eu concentration on Sr2-2xEu2xSi5N8 phosphors: a deep-red emission and luminescent thermal quenching. J. Alloys Compd. 770, 1069–1077 (2019)CrossRefGoogle Scholar
  4. 4.
    H. Guo, X. Huang, Y. Zeng, Synthesis and photoluminescence properties of novel highly thermal stable red-emitting Na3Sc2(PO4)3:Eu3+ phosphors for UV-excited white-light-emitting diodes. J. Alloys Compd. 741, 300–306 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Xin, Y. Wang, G. Zhu, X. Ding, W. Geng, Q. Wang, Structure and temperature sensitive photoluminescence in a novel phosphate red phosphor RbZnPO4:Eu3+. Dalton Trans. 44, 16099–16106 (2015)CrossRefGoogle Scholar
  6. 6.
    J.S. Zhong, D.Q. Chen, H.X. Xu, W.G. Zhao, J. Sun, Z.G. Ji, Red-emitting CaLa4(SiO4)3O:Eu3+ phosphor with superior thermal stability and high quantum efficiency for warm w-LEDs. J. Alloys Compd. 695, 311–318 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Dong, J. Zhao, M. Li, L. Guan, X. Li, A novel red Y2MoSiO8:Eu3+ phosphors with high thermal stability for white LEDs. Ceram. Int. 45, 2653–2656 (2019)CrossRefGoogle Scholar
  8. 8.
    K.P. Raiesh, K. Praveena, U. Ramamurty, T. Tiju, Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate. Solid State Commun. 173, 38–41 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Su, H. Xie, Y. Tan, Y. Zhao, Q. Yang, S. Zhang, Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6:Sm3+, Eu3+. J. Lumin. 204, 457–463 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Guo, S.H. Park, B.K. Moon, J.H. Jeong, J.H. Kim, Ca9Na1/3M2(1−x)/3(PO4)7:2x/3Eu3+ (M = Gd, Y): a promising red-emitting phosphor without concentration quenching for optical display applications. J. Lumin. 194, 346–352 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Dalal, M. Dalal, S. Devi, R. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, Structure analysis and Judd-Ofelt parameterization of Ca9Gd(PO4)7:Eu3+ nanophosphor for solid-state illumination. J. Lumin. 210, 293–302 (2019)CrossRefGoogle Scholar
  12. 12.
    B. Han, B. Liu, Y. Dai, J. Zhang, H. Shi, Alkali metal ion substitution induced luminescence enhancement of NaLaMgWO6:Eu3+ red phosphor for white light-emitting diodes. Ceram. Int. 45, 3419–3424 (2019)CrossRefGoogle Scholar
  13. 13.
    Z.L. Wu, B.J. Chen, X.P. Li, J.S. Sun, J.S. Zhang, H. Zhong, H. Zheng, L.L. Tong, X.Q. Zhang, H.P. Xia, Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors. J. Phys. Chem. Solids 88, 96–103 (2016)CrossRefGoogle Scholar
  14. 14.
    R.P. Cao, C.L. Liao, F. Xiao, G.T. Zheng, W. Hu, Y.M. Guo, Y.X. Ye, Emission enhancement of LiLaMo2O8:Eu3+ phosphor by co-doping with Bi3+ and Sm3+ ions. Dyes Pigm. 149, 574–580 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Qin, Y.L. Huang, T. Tsuboi, H.J. Seo, The red-emitting phosphors of Eu3+-activated MR2(MoO4)4 (M = Ba, Sr, Ca; R = La3+, Gd3+, Y3+) for light emitting diodes. Mater. Res. Bull. 47, 4498–4502 (2012)CrossRefGoogle Scholar
  16. 16.
    K.W. Meert, V.A. Morozov, A.M. Abakumov, J. Hadermann, D. Poelman, P.F. Smet, Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor. Opt. Exp. 22, A961–A972 (2014)CrossRefGoogle Scholar
  17. 17.
    X.Y. Huang, B. Li, P. Du, H. Guo, R.P. Cao, J.S. Yu, K. Wang, X.W. Sun, Realizing highly efficient multicolor tunable emissions from Tb3+ and Eu3+ co-doped CaGd2(WO4)4 phosphors via energy transfer by single ultraviolet excitation for lighting and display applications. Dyes Pigm. 151, 202–210 (2018)CrossRefGoogle Scholar
  18. 18.
    A.M. Abakumov, V.A. Morozov, A.A. Tsirlin, J. Verbeeck, J. Hadermann, Cation ordering and flexibility of the BO4 2− tetrahedral in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites. Inorg. Chem. 53, 9407–9415 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.C. Fang, S.Y. Chu, P.C. Kao, Y.M. Chuang, Z.L. Zeng, Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+ red phosphors. J. Electrochem. Soc. 158, J1–J5 (2011)CrossRefGoogle Scholar
  20. 20.
    G.F. Li, Y.G. Wei, Z.M. Li, X. Gu, Synthesis and photoluminescence of Eu3+ doped CaGd2(WO4)4 novel red phosphors for white LEDs applications. Opt. Mater. 66, 253–260 (2017)CrossRefGoogle Scholar
  21. 21.
    G.F. Li, Y.G. Wei, W.X. Long, X. Gu, Photoluminescence properties, energy transfer and thermal stability of the novel red-emitting CaGd2(WO4)4:Eu3+, Sm3+ phosphors. Mater. Res. Bull. 95, 86–94 (2017)CrossRefGoogle Scholar
  22. 22.
    H.Y. Li, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Color-conversion and photoluminescence properties of Ba2MgW(Mo)O6: Eu phosphors. J. Alloys Compd. 509, 8788–8793 (2011)CrossRefGoogle Scholar
  23. 23.
    L.J. Zhou, W.X. Wang, S. Yu, B. Nan, Y.G. Zhu, Y. Shi, H.H. Shi, X.Z. Zhao, Z.G. Lu, Single-phase LiY(MoO4)2x(WO4)x:Dy3+, Eu3+ phosphors with white luminescence for white LEDs. Mater. Res. Bull. 84, 429–436 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Kavi Rasu, D. Balaji, S. Moorthy Babu, Enhanced efficiency of luminescence with stoichiometry control in LiGd(W(1−x)MoxO4)2:Eu3+ red phosphors. J. Cryst. Growth 468, 766–769 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Qin, W. Tang, Energy transfer and multicolor emission in single-phase Na5Ln(WO4)4−z(MoO4)z:Tb3+, Eu3+ (Ln = La, Y, Gd) phosphors. RSC. Adv. 6, 45376–45385 (2016)CrossRefGoogle Scholar
  26. 26.
    V.A. Morozov, A. Bertha, K.W. Meert, S.V. Rompaey, D. Batuk, G.T. Martinez, S.V. Aert, P.F. Smet, M.V. Raskina, D. Poelman, A.M. Abakumov, J. Hadermann, Incommensurate modulation and luminescence in the CaGd2(1−x)Eu2x(MoO4)4(1-y)(WO4)4y (0 ≤ x≤1, 0 ≤ y≤1) red phosphors. Chem. Mater. 25, 4387–4395 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Batuk, M. Batuk, V.A. Morozov, K.W. Meert, P.F. Smet, D. Poelman, A.M. Abakumov, J. Hadermann, Effect of cation vacancies on the crystal structure and luminescent properties of Ca0.85−1.5xGdxEu0.1,⃞0.05+0.5xWO4 (0 ≤ x ≤ 0.567) scheelite-based red phosphors. J. Alloys Compd. 706, 358–369 (2017)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  29. 29.
    A. Durairajan, D. Balaji, K.K. Rasu, S.M. Babu, M.A. Valente, D. Thangaraju, Sol-gel synthesis and photoluminescence analysis of Sm3+:NaGd(WO4)2 phosphors. J. Lumin. 170, 743–748 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Rajendran, S. Vaidyanathan, New red emitting phosphors NaSrLa(MO4)3:Eu3+ [M = Mo and W] for white LEDs: Synthesis, structure and optical study. J. Alloys Compd. 789, 919–931 (2019)CrossRefGoogle Scholar
  31. 31.
    C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, Incommensurately modulated structure and spectroscopic properties of CaGd2(MoO4)4:Ho3+/Yb3+ phosphors for up-conversion applications. J. Alloys Compd. 695, 737–746 (2017)CrossRefGoogle Scholar
  32. 32.
    C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, Microwave sol-gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4:Er3+/Yb3+ phosphors with incommensurately modulated structure. J. Solid State Chem. 228, 160–166 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Wang, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, J. Shi, Luminescent properties and energy transfer of Sm3+ doped Sr2CaMo1−xWxO6 as a potential phosphor for white LEDs. J. Alloys Compd. 663, 808–817 (2016)CrossRefGoogle Scholar
  34. 34.
    S.H. Lee, L.K. Bharat, J.S. Yu, Enhanced luminescent properties in Eu3+-activated SrMoxW1-xO4 red-emitting phosphors for solid-state lighting and field-emission displays. J. Alloys Compd. 726, 698–706 (2017)CrossRefGoogle Scholar
  35. 35.
    X. Huang, B. Li, H. Guo, D. Chen, Molybdenum-doping-induced photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting phosphors for white light emitting diodes. Dyes Pigm. 143, 86–94 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Li, W. Chang, J. He, Y. Yan, M. Cui, S. Jiang, G. Xiang, X. Zhou, Molybdenum substitution simultaneously induced band structure modulation and luminescence enhancement in LiLaMg(W, Mo)O6 red-emitting phosphor for near ultraviolet excited white light diodes. J. Alloys Compd. 763, 278–288 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Liang, H.M. Noh, W. Ran, S.H. Park, B.C. Choi, J.H. Jeong, K.H. Kim, The design and synthesis of new double perovskite (Na, Li)YMg(W, Mo)O6:Eu3 + red phosphors for white light-emitting diodes. J. Alloys Compd. 716, 56–64 (2017)CrossRefGoogle Scholar
  38. 38.
    L. Li, Y. Pan, X. Zhou, C. Zhao, Y. Wang, S. Jiang, A. Suchocki, M.G. Brik, Luminescence enhancement in the Sr2ZnW1-xMoxO6:Eu3+, Li+ phosphor for near ultraviolet based solid state lighting. J. Alloys Compd. 685, 917–926 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Chen, T. Lin, M. Molokeev, W. Liu, Synthesis, luminescent properties and theoretical calculations of novel orange-red-emitting Ca2Y8(SiO4)6O2:Sm3+ phosphors for white light-emitting diodes. Dyes Pigm. 150, 121–129 (2018)CrossRefGoogle Scholar
  40. 40.
    Q. Yang, G. Fang, Y. Wei, H. Chai, Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+, Eu3+ phosphors for white LED applications. J. Lumin. 199, 323–330 (2018)CrossRefGoogle Scholar
  41. 41.
    P. Du, J.S. Yu, Synthesis and luminescent properties of red-emitting Eu3+-activated Ca0.5Sr0.5MoO4 phosphors. J. Mater. Sci. 51, 5427–5435 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Du, J.S. Yu, Synthesis and luminescent properties of Eu3+-activated Na0.5Gd0.5MoO4: a strong red-emitting phosphor for LED and FED applications. J. Lumin. 179, 451–456 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, R. Hua, Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors. J. Mater. Chem. C 1, 2338–2344 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, A. Suchocki, Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid sate lighting: Synthesis, structure and photoluminescent properties. Ceram. Int. 43, 2720–2729 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Xie, F. Li, H. Xi, R. Tian, X. Wang, Luminescent properties of sol-gel processed red-emitting phosphor Eu3 + , Bi3 + co-doped (Ca, Sr)(Mo, W)O4. J. Mater. Sci.:Mater. Electron. 26, 23–31 (2015)Google Scholar
  46. 46.
    J. Qiao, L. Wang, Y. Liu, P. Huang, Q. Shi, Y. Tian, C. Cui, Preparation, photoluminescence and thermally stable luminescence of high brightness red LiY5P2O13:Eu3+ phosphor for white LEDs. J. Alloys Compd. 686, 601–607 (2016)CrossRefGoogle Scholar
  47. 47.
    L. Wang, W. Guo, Y. Tian, P. Huang, Q. Shi, C. Cui, High luminescent brightness and thermal stability of red emitting Li3Ba2Y3(WO4)8:Eu3+ phosphor. Ceram. Int. 42, 13648–13653 (2016)CrossRefGoogle Scholar
  48. 48.
    A. Durairajan, J.S. Kumar, D. Thangaraju, M.A. Valente, S.M. Babu, Photoluminescence properties of sub-micron NaGd1-xEux(WO4)2 red phosphor for solid state lightings application: derived by different synthesis routes. Superlattices Microstruct. 93, 308–321 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Advanced Materials and Nano TechnologyXidian UniversityXi’anChina
  2. 2.Beijing Microelectronics Technology InstituteBeijingChina

Personalised recommendations