Advertisement

Synthesis and luminescence properties of orange–red-emitting Ca9La(VO4)7:Sm3+ phosphors co-doped with alkali metal ions

  • Mingfeng Dai
  • Kehui QiuEmail author
  • Peicong Zhang
  • Wentao Zhang
Article
  • 6 Downloads

Abstract

Orange–red-emitting phosphors Ca9La(VO4)7:Sm3+ and Ca9La(VO4)7:Sm3+,M+ (M+ = Li+, Na+, and K+) were synthesized by the combustion method. Their crystal structure, microstructure, luminescence properties, and decay performance were investigated in detail. The results revealed that the as-prepared samples were crystallized in a trigonal structure (space group of R3c, No. 161). Under 405-nm excitation, the Ca9La(VO4)7:Sm3+ phosphor exhibited excellent orange–red emission. The Sm3+ ions were quenched at 0.02 equivalents by electric dipole–dipole interactions. After the introduction of alkali metal ions Li+, Na+, and K+, the luminescence properties of the Ca9La(VO4)7:Sm3+ samples were noticeably enhanced, particularly those of that co-doped with Li+. The chromaticity coordinates of Ca9La(VO4)7:0.02Sm3+, 0.02Li+ and Ca9La(VO4)7:0.02Sm3+ were (0.610, 0.390) and (0.604, 0.395), respectively, close to those of the commercial red phosphor Y2O2S:Eu3+ (0.622, 0.351). The results suggested that the Ca9La(VO4)7:0.02Sm3+, 0.02Li+ phosphor may serve as an orange–red emitter for applications in white light-emitting diodes excited by near-ultraviolet radiation.

Notes

Acknowledgments

This work was supported by the Key Scientific and Technological Research and Development Program (Grant Nos. 2017GZ0400 and 2015SZ0196) and the project of the CDUT utilization of rare earth resource and new materials innovation team (Grant No. 10912-kytd201506).

References

  1. 1.
    C.C. Lin, Y.S. Zheng, H.Y. Chen, C.H. Ruan, G.W. Xiao, R.S. Liu, Improving optical properties of white LED fabricated by a blue LED chip with yellow/red phosphors. J. Electrochem. Soc. 157, H900–H903 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors. Dalton Trans. 45, 11214–11232 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Ma, Z. Huang, M. Fang, Y. Liu, X. Wu, Structural and luminescence properties of red-emitting Cs1−xMgPO4:xEu2+ phosphors for near-UV-pumped light emitting diodes. RSC Adv. 5, 9933–9938 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Ma, B. Liu, Luminescence properties and crystal structure of Sr3Sc(PO4)3:Sm3+ as novel orange-red emitting phosphors. J. Lumin. 188, 54–59 (2017)CrossRefGoogle Scholar
  5. 5.
    D. Wen, J. Feng, J. Li, J. Shi, M. Wu, Q. Su, K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes. J. Mater. Chem. C 3, 2107–2114 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Li, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Tunable photoluminescence properties of Eu(II)-and Sm(III) coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III). Opt. Mater. Express 2, 443–451 (2012)CrossRefGoogle Scholar
  7. 7.
    Z. Sun, M. Wang, Z. Yang, Z. Jiang, K. Liu, Z. Ye, Enhanced red emission from Eu3+-Bi3+ co-doped Ca2YSbO6 phosphors for white light-emitting diode. J. Alloys Compd. 658, 453–458 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Guo, D. Huang, Q. Su, Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng. B 130, 189–193 (2006)CrossRefGoogle Scholar
  9. 9.
    P. Du, J.S. Yu, Photoluminescence and cathode luminescence properties of Eu3+ ions activated AMoO4 (A = Mg, Ca, Sr, Ba) phosphors. Mater. Res. Bull. 70, 553–558 (2015)CrossRefGoogle Scholar
  10. 10.
    G.H. Lee, T.H. Kim, C. Yoon, S. Kang, Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS. J. Lumin. 128, 1922–1926 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Wang, B.K. Moon, S.H. Park, K.H. Kim, J. Shi, K.H. Kim, J.H. Jeong, Photoluminescence properties, crystal structure and electronic structure of a Sr2CaWO6:Sm3+ red phosphor. RSC Adv. 5, 89290–89298 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Li, M. Shang, Y. Zhang, J. Fan, H. Lian, J. Lin, Photoluminescence properties of single-component white-emitting Ca9Bi(PO4)7:Ce3+, Tb3+, Mn2+ phosphors for UV LEDs. J. Mater. Chem. C 3, 7096–7104 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Li, X.G. Liu, H.M. Noh, J.H. Jeong, Chemical bond parameters and photoluminescence of a natural-white-light Ca9La(VO4)7:Tm3+ , Eu3+ with one O2–V5+ charge transfer and dual f-f transition emission centers. J. Solid State Chem. 221, 95–101 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Mi, K. Du, K. Huang, P. Zhou, D. Geng, Y. Zhang, M. Shang, J. Lin, Synthesis and luminescence of Ca9Eu1-xLnx(VO4)7 (Ln = Y, La, Gd, Lu) phosphors. Mater. Res. Bull. 60, 72–78 (2014)CrossRefGoogle Scholar
  15. 15.
    P.A. Loiko, A.S. Yasukevich, A.E. Gulevich, M.P. Demesh, M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, A.A. Kornienko, E.B. Dunina, N.V. Kuleshov, K.V. Yumashev, Growth, spectroscopic and thermal properties of Nd-doped disordered Ca9(La/Y)(VO4)7 and Ca10(Li/K)(VO4)7 crystals. J. Lumin. 137, 252–258 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Sun, Z. Lin, L. Zhang, Y. Huang, G. Wang, Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7. J. Alloys Compd. 551, 229–232 (2013)CrossRefGoogle Scholar
  17. 17.
    B.I. Lazoryak, A.A. Belik, S. Yu Stefanovich, V.A. Morozov, A.P. Malakho, O.V. Baryshnikova, I.A. Leonidov, O.I. Leonidova, Ferroelectric–ionic conductor phase transitions in optical nonlinear Ca9R(VO4)7 vanadates. Dokl. Phys. Chem. 384, 144–148 (2002)CrossRefGoogle Scholar
  18. 18.
    S.J. Sun, L.Z. Zhang, Y.S. Huang, F.F. Yuan, Z.B. Lin, G.F. Wang, Structure, thermal and optical properties of Ca9Y0.5La0.5(VO4)7-potential nonlinear optical material. Mater. Res. Innov. 19, 140–144 (2015)CrossRefGoogle Scholar
  19. 19.
    A.A. Belik, V.A. Morozov, S.S. Khasanov, B.I. Lazoryak, Crystal structures of double vanadates Ca9R(VO4)7: I. R = La, Pr, and Eu. Crystallogr. Rep. 42, 751–757 (1997)Google Scholar
  20. 20.
    L. Li, H.M. Noh, B.K. Moon, J.H. Jeong, B.C. Choi, X. Liu, Tunable white-light emission in single-phase Ca9Gd(VO4)7:Tm3+, Eu3+. Opt. Mater. Express. 4, 16–28 (2014)CrossRefGoogle Scholar
  21. 21.
    L.H. Liu, R.J. Xie, X.D. Sun, Effects of Sm3+ doping on the photoluminescence properties of Ca9Eu1-xSmx(VO4)7 red-emitting phosphors. J. Key Eng. Mater. 512, 1488–1493 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Liu, R.-J. Xie, N. Hirosaki, Y. Li, T. Takeda, C.-N. Zhang, J. Li, X. Sun, Crystal structure and photoluminescence properties of red-emitting Ca9La1−x(VO4)7:xEu3+ phosphors for white light-emitting diodes. J. Am. Ceram. Soc. 93, 4081–4086 (2010)CrossRefGoogle Scholar
  23. 23.
    N. Zhuang, X. Liu, Q. Xu, X. Chen, B. Zhao, X. Hu, J. Chen, Crystal growth, nonlinear frequency-doubling and spectral characteristic of Nd:Ca9La(VO4)7 crystal. J. Alloys Compd. 595, 113–119 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Cao, Y. Ma, C. Quan, W. Zhu, K. Yang, W. Yin, G. Zheng, M. Wu, Z. Sun, Photoluminescence properties of Ca9Y(VO4)7 and Ca9Y0.95Ln0.05(VO4)7(Ln3+ = Eu3+, Sm3+, Pr3+). J. Alloys Compd. 487, 346–350 (2009)CrossRefGoogle Scholar
  25. 25.
    F. Yuan, W. Zhao, S. Sun, L. Zhang, Y. Huang, Z. Lin, G. Wang, Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7 crystal. J. Lumin. 154, 241–245 (2014)CrossRefGoogle Scholar
  26. 26.
    A.A. Belik, S.V. Grechkin, L.O. Dmitrienko, V.A. Morozov, B.I. Lazoryak, S.S. Khasanov, Crystal structures of double vanadates Ca9R(VO4)7. IV. R = Er, Tm, Yb, and Lu. Crystallogr. Rep. 45, 896–901 (2000)CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, P. Loiko, H. Wu, X. Mateos, J.M. Serres, H.F. Lin, W.D. Chen, G. Zhang, L.Z. Zhang, F. Díaz, M. Aguiló, V. Petrov, U. Griebner, Y.C. Wang, E. Vilejshikova, K. Yumashev, Z.B. Lin, Disordered Tm:Ca9La(VO4)7: a novel crystal with potential for broadband tunable lasing. Opt. Mater. Express 7, 484–493 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials. New J. Chem. 39, 8282–8290 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Bondzior, D. Stefańska, A. Kubiak, P.J. Dereń, Spectroscopic properties of K4SrSi3O9 doped with Sm3+. J. Lumin. 173, 38–43 (2016)CrossRefGoogle Scholar
  30. 30.
    V.V. Jaiswal, S. Bishnoi, G. Swati, P. Singh, N. Lohia, S. Bathula, D. Haranath, Luminescence Properties of Yttrium Gadolinium Orthovanadate Nanophosphors and Efficient Energy Transfer from VO 43− to Sm 3+ via Gd 3+ Ions (Arab. J, Chem, 2017)Google Scholar
  31. 31.
    Z. Xia, D. Chen, Synthesis and luminescence properties of BaMoO4:Sm3+ phosphors. J. Am. Ceram. Soc. 93, 1397–1401 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Lakshminarayana, J.R. Qiu, Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses. J. Alloys Compd. 476, 470–476 (2009)CrossRefGoogle Scholar
  33. 33.
    G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968)CrossRefGoogle Scholar
  34. 34.
    L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048–1053 (1967)CrossRefGoogle Scholar
  35. 35.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  36. 36.
    J. Liu, H.Z. Lian, C.S. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4: Eu3+. Opt. Mater. 29, 1591–1594 (2007)CrossRefGoogle Scholar
  37. 37.
    Q. Zhang, J. Wang, M. Zhang, W. Ding, Q. Su, Enhanced photoluminescence of Ca2Al2SiO7: Eu3+ by charge compensation method. Appl. Phys. A 88, 805–809 (2007)CrossRefGoogle Scholar
  38. 38.
    X.Y. Yang, J. Liu, H. Yang, X.B. Yu, Y.Z. Guo, Y.Q. Zhou, J.Y. Liu, Synthesis and characterization of new red phosphors for white LED applications. J. Mater. Chem. 19, 3771–3774 (2009)CrossRefGoogle Scholar
  39. 39.
    F. Du, R. Zhu, Y. Huang, Y. Tao, H.J. Seo, Luminescence and microstructures of Eu3+-doped Ca9LiGd2/3(PO4)7. Dalton Trans. 40, 11433–11440 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Tian, S.I. Mho, Enhanced luminescence of SrTiO3:Pr3+, by incorporation of Li+ ion. Solid State Commun. 125, 647–651 (2003)CrossRefGoogle Scholar
  41. 41.
    X. Li, L. Guan, X. Li, J. Wen, Z. Yang, Luminescent properties of NaBaPO4: Eu3+, red-emitting phosphor for white light-emitting diodes. Powder Technol. 200, 12–15 (2010)CrossRefGoogle Scholar
  42. 42.
    X. Ding, G. Zhu, W. Geng, M. Mikami, Y. Wang, Novel blue and green phosphors obtained from K2ZrSi3O9:Eu2+ compounds with different charge compensation ions for LEDs under near-UV excitation. J. Mater. Chem. C 3, 6676–6685 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Cheng, W. Zhang, Y. Li, S. Dai, X. Chen, K. Qiu, Synthesis and photoluminescence properties of Sr3(PO4)2:Re3+, Li+, (Re = Eu, Sm) red phosphors for white light-emitting diodes. Ceram. Int. 43, 11244–11249 (2017)CrossRefGoogle Scholar
  44. 44.
    K.Y. Yeh, W.R. Liu, Luminescence properties of NaCaGaSi2O7:Re, Li+ (Re = Ce3+, Eu3+ or Tb3+) phosphors for UV excitable white light emitting diodes. Mater. Res. Bull. 80, 127–134 (2016)CrossRefGoogle Scholar
  45. 45.
    H. Zhu, C.C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.S. Liu, X. Chen, Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. J. Nat. Commun. 5, 4312 (2014)CrossRefGoogle Scholar
  46. 46.
    W.H. Fonger, C.W. Struck, Eu3+ 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl. J. Chem. Phys. 52, 6364 (1970)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, L. Lan, X. Zhang, X. Qun, Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes. J. Rare Earths 26, 446–449 (2008)CrossRefGoogle Scholar
  48. 48.
    Z. Wang, S. Lou, P. Li, Improvement of the red emitting phosphor by introducing A+ (A = Li, Na, K) into Sr3La(PO4)3:Eu3+. J. Alloys Compd. 658, 813–817 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mingfeng Dai
    • 1
  • Kehui Qiu
    • 2
    Email author
  • Peicong Zhang
    • 1
  • Wentao Zhang
    • 1
  1. 1.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.Institute of Materials Science and TechnologyChengdu University of TechnologyChengduChina

Personalised recommendations