Advertisement

Enhancing thermoelectric properties of p-type SiGe by SiMo addition

  • Yixiao Li
  • Jun Han
  • Qingpei Xiang
  • Chuanfei Zhang
  • Jing LiEmail author
Article
  • 9 Downloads

Abstract

The thermoelectric properties of SiGe–x%SiMo composites are studied from 323 to 1173 K. Electrical conductivity increases with SiMo concentration due to improved carrier mobility and reaches a peak of 1735 S cm−1 when x = 20. The sample SiGe–20%SiMo shows the highest PF of 2.9 mW−1 m−1 K−2 at 1073 K, which is 31.8% higher than the PF value of SiGe. Although total thermal conductivities increase after SiMo addition, the lattice thermal conductivities are reduced due to strengthened phonon scattering by the presence of MoSi2. The ZT of SiGe is 0.64 at 1073 K. It is increased for all the composites in the high-temperature range between 773 and 1073 K, which is beneficial to high temperature application of SiGe alloys. SiGe–20%SiMo shows the highest ZT of 0.79 at 1073 K.

Notes

Acknowledgements

The authors would like to thank for the financial support of National Natural Science Foundation of China (Grant No. 11605170).

References

  1. 1.
    L. Yang, Z. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials. Adv. Energy Mater. 8, 1701797 (2018)CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRefGoogle Scholar
  3. 3.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRefGoogle Scholar
  4. 4.
    Y.L. Zhang, M. Cleary, X.W. Wang, N. Kempf, L. Schoensee, J. Yang, G. Joshi, L. Meda, High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers. Manag. 105, 946–950 (2015)CrossRefGoogle Scholar
  5. 5.
    G.L. Bennett, Mission interplanetary: using radioisotope power to explore the solar system. Energy Convers. Manag. 49, 382–392 (2008)CrossRefGoogle Scholar
  6. 6.
    J.P. Fleurial, J. Chase, P. Gogna, S. Firdosy, B.C. Li, N. Keyawa, C.K. Huang, G. Nakatsukasa, B. Nesmith, 1 kW Small fission heat pipe-cooled thermoelectric power system design concept and technology maturation. 11th International Energy Conversion Engineering Conference, vol. 7 (2013), pp. 14–17Google Scholar
  7. 7.
    A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, V.V. Khovaylo, Optimization of ball-milling process for preparation of Si–Ge nanostructured thermoelectric materials with a high figure of merit. Scr. Mater. 96, 9–12 (2015)CrossRefGoogle Scholar
  8. 8.
    A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Bathula, B. Gahtori, M. Jayasimhadri, S.K. Tripathy, K. Tyagi, A.K. Srivastava, A. Dhar, Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Appl. Phys. Lett. 105, 061902 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswala, S.K. Gupta, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A 2, 6922–6930 (2014)CrossRefGoogle Scholar
  11. 11.
    G.L. Bennett, J.J. Lombardo, R.J. Hemler, G. Silverman, C.W. Whitmore, W.R. Amos, E.W. Johnson, A. Schock, R.W. Zocher, T.K. Keenan, J.C. Hagan, R.W. Englehart, Mission of daring: the general-purpose heat source radioisotope thermoelectric generator. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), vol. 6 (2006), pp. 26–29Google Scholar
  12. 12.
    D.R. Koenig, W.A. Ranken, Design options for the sp-100 thermoelectric nuclear space power plant. In 17th Intersociety Energy Conversion Engineering Conference, vol. 8 (1982), pp. 8–13Google Scholar
  13. 13.
    H. Li, X.L. Su, X.F. Tan, Q.F. Zhang, C. Uher, G.J. Snyder, U. Aydemir, Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectric. J. Materiomics 3, 273–279 (2017)CrossRefGoogle Scholar
  14. 14.
    J.Q. He, S.N. Girard, J.C. Zheng, L.D. Zhao, M.G. Kanatzidis, V.P. Dravid, Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012)CrossRefGoogle Scholar
  15. 15.
    H.J. Wu, J. Carrete, Z.Y. Zhang, Y.Q. Qu, X.T. Shen, Z. Wang, L.D. Zhao, J.Q. He, Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 6, 1–11 (2014)Google Scholar
  16. 16.
    G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, Realizing high figure of merit in phase-separated polycrystalline Sn1−xPbxSe. J. Am. Chem. Soc. 138, 13647–13654 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Tan, G. Liu, J. Xu, X. Tan, H. Shao, H. Hu, H. Jiang, Y. Lu, J. Jiang, Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. J Materiomics 4, 62–67 (2018)CrossRefGoogle Scholar
  18. 18.
    W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D 40, 6784–6790 (2007)CrossRefGoogle Scholar
  19. 19.
    J.Q. He, I.D. Blum, H.Q. Wang, S.N. Girard, J. Doak, L.D. Zhao, J.C. Zheng, G. Casillas, C. Wolverton, M.J. Yacaman, D.N. Seidman, M.G. Kanatzidis, V.P. Dravid, Morphology control of nanostructures: Na-doped PbTe–PbS system. Nano Lett. 12, 5979–5984 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Sui, S.K. Bux, S.M. Kauzlarich, Influence of YbP on the thermoelectric properties of n-type P doped Si95Ge5 alloy. J. Alloys Compd. 745, 624–630 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Ahmad, K. Dubey, S. Bhattacharya, R. Basu, R. Bhatt, A.K. Bohra, A. Singh, D.K. Aswal, S.K. Gupt, Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2. AIP Conf. Proc. 1731, 110003 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Solá, F.W. Dynys, Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods. J. Alloys Compd. 633, 165–169 (2015)CrossRefGoogle Scholar
  23. 23.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Stranz, J. Kahler, A. Waag, E. Peiner, Thermoelectric properties of high-doped silicon from room temperature to 900 K. J. Electron. Mater. 42(7), 2381–2387 (2013)CrossRefGoogle Scholar
  25. 25.
    J.F. Nakahara, B. Franklin, L.E. DeFillipo, Development of an improved performance SiGe unicouple. AIP Conf. Proc. 324, 809 (1995)CrossRefGoogle Scholar
  26. 26.
    Y.J. Lee, A.J. Pak, G.S. Hwang, What is the thermal conductivity limit of silicon germanium alloys? Phys. Chem. Chem. Phys. 18, 19544–19548 (2016)CrossRefGoogle Scholar
  27. 27.
    U. Erturun, K. Erermis, K. Mossi, Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng. 73(1), 128–141 (2014)CrossRefGoogle Scholar
  28. 28.
    Z. Zamanipour, X.H. Shi, A.M. Dehkordi, J.S. Krasinski, D. Vashaee, The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys. Status Solidi A 209(10), 2049–2058 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Tayebi, Z. Zamanipour, M. Mozafari, P. Norouzzadeh, J.S. Krasinski, K.F. Ede, D. Vashaee, Thermal and thermoelectric properties of nanostructured versus crystalline SiGe. IEEE Green Technol. 364(1), 1–4 (2014)Google Scholar
  30. 30.
    K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernardgranger, J. Dufourcq, High-performance silicon germanium-based thermoelectric modules for gas exhaust energy scavenging. J. Electron. Mater. 44(6), 2192–2202 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Zhu, S.L. Guo, Thermoelectric properties of silicon germanium alloy nanocomposite fabricated by mechanical alloying and spark plasma sintering. Key Eng. Mater. 703, 70–75 (2016)CrossRefGoogle Scholar
  32. 32.
    W.S. Liu, Q. Jie, H.S. Kim, Z.F. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Shock, Design, analysis, and spacecraft integration of RTGs for CRAF and Cassini mission (Fairchild Space, Germantown, 1991)Google Scholar
  34. 34.
    J. Li, Q.P. Xiang, R.D. Ze, M.Y. Ma, S.M. Wang, Q.L. Xie, Y.C. Xiang, Thermal and electrical analysis of SiGe thermoelectric unicouple filled with thermal insulation materials. Appl. Therm. Eng. 134, 266–274 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yixiao Li
    • 1
  • Jun Han
    • 1
  • Qingpei Xiang
    • 1
  • Chuanfei Zhang
    • 1
  • Jing Li
    • 1
    Email author
  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations