Advertisement

Luminescence and energy transfer mechanism of KZnPO4: Dy3+, Eu3+

  • Ailing ZouEmail author
  • Shixue Sun
  • Jingjie Yu
  • Nianyu Zou
  • Zeqing Hu
  • Yanjie ZhangEmail author
Article
  • 25 Downloads

Abstract

Dy3+ -doped and Dy3+/Eu3+ co-doped KZnPO4 phosphors have been successfully synthesized by solid-state method. X-ray diffraction (XRD), photoluminescence spectra and fluorescence lifetime are employed to characterize these samples. It can be indicated from XRD results that KZnPO4 phosphors exhibit pure phase with high crystallinity. Under excitation of 391 nm, Dy3+-doped KZnPO4 phosphors showed two typical emission bands at 485 nm (blue) and 577 nm (yellow). In the case of Dy3+ and Eu3+ co-doped KZnPO4 phosphors, it can be found that color coordinates are sensitive to the Eu3+ concentration due to the red emission from Eu3+ ions. The emission color changes from blue to warm white by increasing the Eu3+ contents. The color coordinates and color temperature were also adjusted by changing the contents of Eu3+ ions. Furthermore, the mechanism of energy transfer from Dy3+ to Eu3+ ions is demonstrated to be quadrupole–quadrupole interaction for the co-doped samples.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Liaoning Province (20170540065), the Nature Science Foundation Key Item of Liaoning Province (No. 20170520012), the General Project of Liaoning Provincial Education Department (2016J057) and the Start-up Funding for Doctoral researchers of Dalian Polytechnic University (61020726).

References

  1. 1.
    T. Wang, Y.H. Hun, L. Chen, X.J. Wang, M. He, A white-light emitting phosphor LuNbO4: Dy3+ with tunable emission color manipulated by energy transfer from NbO4 3− groups to Dy3+. J. Lumin. 181, 189 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Wallez, F. Lucas, J.P. Souron, M. Quarton, Potassium-zinc monophosphate: an original polymorphic, tridymite derivate. Mater. Res. Bull. 34, 1251 (1999)CrossRefGoogle Scholar
  3. 3.
    Z.P. Ci, R.N. Guan, L.J. Jin, L.L. Han, J.C. Zhang, J. Ma, Y.H. Wang, Host-sensitized white light-emitting phosphor MgY4Si3O13:Dy3+ with satisfactory thermal properties for UV-LEDs. CrystEngComm 17, 4982 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.C. Wu, J. Liu, W.G. Hou, J. Xu, M.L. Gong, A new single-host white-light emitting BaSrMg(PO4)2:Eu2+ phosphor for white-light-emitting diodes. J. Alloys Compds. 498, 139 (2010)CrossRefGoogle Scholar
  5. 5.
    C.C. Lin, Z.R. Xiao, G.Y. Guo, T.S. Chan, R.S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: collocated characteristic analysis and theoretical calculations. J. Am. Chem. Soc. 132, 3020 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Gaft, R. Reisfeld, G. Panczer, S. Shoval, B. Champagnon, G. Boulon, Eu3+ luminescence in high-symmetry sites of natural apatite. J. Lumin. 96, 572 (1997)CrossRefGoogle Scholar
  7. 7.
    H. Zeqing, Y. Guo, J. Zhang, Y. Zhang, Tunable luminescence properties and energy transfer of single-phase Ca4(PO4)2O: Dy3+, Eu2+ multi-color phosphors for warm white light. J. Mater. Sci. 53, 6414 (2018)CrossRefGoogle Scholar
  8. 8.
    D. Deng, H. Yu, Y. Li, Y. Hua, G. Jia, S. Zhao, H. Wang, L. Huang, Y. Li, C. Li, S. Xu, Ca4(PO4)2O: Eu2+ red-emitting phosphor for solid-state lighting: structure, luminescent properties and white light emitting diode application. J. Mater. Chem. C 1, 3194 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Xu, Y. Song, H. Guan, Y. Sheng, P. Ma, X. Zhou, Z. Shi, H. Zou, The photoluminescence, thermal properties and tunable color of Na1-xAl1+2xSi12xO4: xCe3+/Tb3+/Dy3+ via energy transfer: a single-component multicolor-emitting phosphor. Phys. Chem. Chem. Phys. 19, 22197 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Ding, Y. Li, L. Yang, X. Ding, Y. Wang, A novel single-phase warm white emission phosphor Sr3YAl2O7.5: Bi3+, Eu3+ with energy transfer for UV white LEDs. RSC Adv. 6, 42618 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Zhu, C.C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.S. Liu, X. Chen, Highly efficient non-rare earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 5, 4312 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Fei Li, T.H. Liu, Solid state synthesis of CaTiO3:Dy3+/Eu3+ phosphors towards white light emission. Chem. Phys. Lett. 686, 78 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Liu, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, Y. Liu, X. Wang, Single-phased white-emitting 12CaO·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. J. Mater. Chem. 22, 16839 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, W. Gong, J. Yu, H. Pang, Q. Song, G. Ning, A new single-phase white-light-emitting CaWO4: Dy3+ phosphor: synthesis, luminescence and energy transfer. RSC Adv. 5, 62527 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Chen, X. Yuan, F. Zhang, S. Wang, Photoluminescence properties of Sr3(PO4)2: Eu2+, Dy3+ double-emitting blue phosphor for white LEDs. Opt. Mater. 37, 65 (2014)CrossRefGoogle Scholar
  16. 16.
    K.E. Foka, B.F. Dejene, H.C. Swart, The effect of urea: nitrate ratio on the structure and luminescence properties of YVO4: Dy3+ phosphors. Phys. Lett. B 480, 95 (2016)Google Scholar
  17. 17.
    S. Dutta, S.K. Sharma, Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6. J. Mater. Sci. 51, 6750 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Jyothia, L.S. Kumari, K.G. Gopchandran, White emitting Dy3+ activated perovskite titanates and energy transfer by Eu3+ codoping. Ceram. Int. 43, 12044 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Fang, P. Liu, M. Liu, F. Li, G.L. Shang, X.X. Gong, G.T. Fei, SrS: Eu2+, Dy3+ nanostructures: morphologies evolution and properties of afterglow. J. Alloys Compds. 639, 149 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Das, C.Y. Yang, C.H. Lu, Structural and optical properties of tunable warm-white light-emitting ZrO2:Dy3+-Eu3+ nanocrystals. J. Am. Ceram. Soc. 96, 1602 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Gou, J. Wang, S.F. Ye, B.X. Yu, Luminescence and microstructural features of Dy3+-activated KZnPO4 phosphors. Mater. Res. Bull. 70, 827 (2015)CrossRefGoogle Scholar
  22. 22.
    S.Y. Zhang, Y.L. Huang, H.J. Seo, The spectroscopy and structural sites of Eu2+ ions doped KCaPO4 phosphor. J. Electrochem. Soc. 157, 261 (2010)CrossRefGoogle Scholar
  23. 23.
    B. Elouadi, L. Elammart, Crystal structures and ferroelectric properties of AIBIIPO4 (AI = monovalent cation and BII = divalent cation). Ferroelectrics 107, 253 (1900)CrossRefGoogle Scholar
  24. 24.
    S.H.M. Poort, W.P. Blokpoel, G. Blasse, Luminescence of Eu2+ in barium and strontium aluminate and gallate. Chem. Mater. 7, 1547 (1995)CrossRefGoogle Scholar
  25. 25.
    T.S. Chan, R.S. Liu, I. Baginskiy, Synthesis, crystal structure, and luminescence properties of a novel green-yellow emitting phosphor LiZn1−xPO4: Mnx for light emitting diodes. Chem. Mater. 20, 1215 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor. Chem. Mater. 23, 1216 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.S. Tang, S.F. Hu, C.C. Lin, N.C. Bagkar, R.S. Liu, Thermally stable luminescence of KSrPO4: Eu2+ phosphor for white light UV light-emitting diodes. Appl. Phys. Lett. 90, 151108 (2007)CrossRefGoogle Scholar
  28. 28.
    Z.W. Zhang, A.J. Song, S.T. Song, J.P. Zhang, W.G. Zhang, D.J. Wang, Synthesis and luminescence properties of novel KSrPO4:Dy3+ phosphor. J. Alloys Compds. 629, 32 (2015)CrossRefGoogle Scholar
  29. 29.
    M.P. Hehlen, M.G. Brik, K.W. Krämer, 50th anniversary of the Judd-Ofelt theory: an experimentalist’s view of the formalism and its application. J. Lumin. 136, 221 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Li, Solid state synthesis and luminescence of NaLa(WO4)2:Dy3+ phosphors. J. Mater. Sci. 27, 11012 (2016)Google Scholar
  31. 31.
    Q. Mao, Q. Yuan, Z. Ji, J. Xi, Z. Kong, J. Zhang, Effects of boric acid on structural and luminescent properties of BaAl2O4:(Eu2+, Dy3+) phosphors. Res. Chem. Intermediates 42, 6557 (2016)CrossRefGoogle Scholar
  32. 32.
    B.M. Mothudi, O.M. Ntwaeaborwa, S. S. Pitale, H.C. Swart, Luminescent properties of Ca0.97Al2O4:Eu0.01 Dy0.023+ phosphors prepared by combustion method at different initiating temperatures. J. Alloys Compds. 508, 262 (2010)CrossRefGoogle Scholar
  33. 33.
    D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063 (1954)CrossRefGoogle Scholar
  34. 34.
    R. Reisfeld, E. Greenberg, R. Velapoldi, B. Barnett, Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them. J. Chem. Phys. 56, 1698 (1972)CrossRefGoogle Scholar
  35. 35.
    Z.Y. Cheng, J.J. Yu, Y.J. Zhang, N.Y. Zou, Luminescence and energy transfer mechanism of α-Ba3Y(BO3)3:Ce3+, Tb3+. J. Lumin. 192, 1004 (2017)CrossRefGoogle Scholar
  36. 36.
    P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, M.K.R. Warrier, Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J. Phys. Chem. Solids 64, 841 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and Engineering of Dalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.Panasonic Software Development Center Dalian Co. LtdDalianPeople’s Republic of China

Personalised recommendations