Advertisement

Different morphologies of Ni(OH)2 derived from a MOF template for high performance supercapacitors

  • Qi Tang
  • Li MaEmail author
  • Feifei CaoEmail author
  • Mengyu Gan
  • Fabing Yan
Article
  • 17 Downloads

Abstract

Owing to the limited electrochemical performance of pristine metal–organic frameworks (MOFs) for supercapacitors, precursor conversion method is employed to synthesize sheet-like and sphere-like Ni(OH)2 using a MOF template based on the exploration of Ni-MOF at different growth time. The morphology has significant impact on the electrochemical performance of Ni(OH)2 electrode, we compare the electrochemical behavior of sheet-like Ni(OH)2 and sphere-like Ni(OH)2 by means of CV, GCD and EIS test. Electrochemical evolution demonstrates that the sphere-like Ni(OH)2 delivers a superior specific capacitance (982 Fg−1 at 1 Ag−1), better cycling life span and also relatively low resistance, which can be attributed to its porous structure and large accessible specific surface area. Our findings lead us to conclude that the sphere-like Ni(OH)2 synthesized by a facile method is shown to be potentially attractive candidate in supercapacitors.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51501068).

Supplementary material

10854_2019_1240_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4332 kb)

References

  1. 1.
    J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, J. Hao, H. Qu, J. Zhao, Y. Li, L. Mai, Nano Energy 19, 222–233 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Gou, S. Xie, Z. Yang, Y. Liu, Y. Chen, Y. Liu, C. Liu, Electrochim. Acta 229, 299–305 (2017)CrossRefGoogle Scholar
  3. 3.
    N. Tuan Loi, D. Park, J. Hur, H.B. Son, M.S. Park, S.G. Lee, J.H. Kim, I.T. Kim, Appl. Surf. Sci. 429, 218–224 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Ruan, D. Zha, L. Lv, B. Zhang, J. Liu, X. Ji, C. Wang, J. Jiang, Electrochim. Acta 236, 297–308 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, ACS Appl. Mater. Interfaces 9, 15510–15524 (2017)CrossRefGoogle Scholar
  6. 6.
    L.G. Beka, X. Li, W. Liu, Sci. Rep. 7, 2105 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472–7477 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Gao, Q. Zhang, F. Soyekwo, C. Lin, R. Lv, Y. Qu, M. Chen, A. Zhu, Q. Liu, Electrochim. Acta 237, 94–101 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, L. Li, G. Ruan, H. Fei, C. Xiang, X. Fan, J.M. Tour, ACS Nano 8, 9622–9628 (2014)CrossRefGoogle Scholar
  10. 10.
    H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Nat. Commun. 4, 1894 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Gao, L. Lei, M. Hu, L. Qin, Y. Sun, J. Power Sour. 191, 662–668 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818–3823 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem. Mater. 20, 308–316 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, J. Yu, Electrochim. Acta 156, 108–114 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Ibrahim, Y.S. Lin, Ind. Eng. Chem. Res. 55, 8652–8658 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Xiao, Q. Li, X. Yuan, Y. Xu, M. Zheng, H. Pang, Small Methods 2, 1800240 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Yan, Y. Luo, J. Ma, B. Li, H. Xue, H. Pang, Small 14, 1801815 (2018)CrossRefGoogle Scholar
  18. 18.
    Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 27, 5010–5016 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, H. Ding, Q. Zhong, Appl. Surf. Sci. 284, 138–144 (2013)CrossRefGoogle Scholar
  20. 20.
    I. Ahmed, S.H. Jhung, Chem. Eng. J. 310, 197–215 (2017)CrossRefGoogle Scholar
  21. 21.
    H.D. Mai, K. Rafiq, H. Yoo, Chem.-Eur. J. 23, 5631–5651 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Coord. Chem. Rev. 307, 361–381 (2016)CrossRefGoogle Scholar
  23. 23.
    W.-T. Koo, S.-J. Choi, S.-J. Kim, J.-S. Jang, H.L. Tuller, I.-D. Kim, J. Am. Chem. Soc. 138, 13431–13437 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Liu, C. Shi, C. Zhai, M. Cheng, Q. Liu, G. Wang, ACS Appl. Mater. Interfaces 8, 4585–4591 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Xu, S. Liu, Y. Liu, Rsc Adv. 6, 52137–52142 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo, H. Wang, Y. Guo, S. Madhavi, Q. Yan, ACS Appl. Mater. Interface 8, 25261–25267 (2016)CrossRefGoogle Scholar
  27. 27.
    Q. Dong, Q. Wang, Z. Dai, H. Qiu, X. Dong, ACS Appl. Mater. Interfaces 8, 26902–26907 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Jin, S.-Y. Lu, L. Ma, M.-Y. Gan, Y. Lei, X.-L. Zhang, G. Fu, P.-S. Yang, M.-F. Yan, J. Power Sour. 341, 294–301 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Wang, T. Wei, L. Sheng, L. Jiang, X. Wu, Q. Zhou, B. Yuan, J. Yue, Z. Liu, Z. Fan, Nano Energy 30, 84–92 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Lei, M. Gan, L. Ma, M. Jin, X. Zhang, G. Fu, P. Yang, M. Yan, Ceram. Int. 43, 6502–6510 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, J. Mater. Chem. A 3, 20658–20663 (2015)CrossRefGoogle Scholar
  32. 32.
    S. He, Z. Li, J. Wang, P. Wen, J. Gao, L. Ma, Z. Yang, S. Yang, RSC Adv. 6, 49478–49486 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, L. Ma, M. Gan, G. Fu, M. Jin, Y. Lei, P. Yang, M. Yan, J. Power Sour. 340, 22–31 (2017)CrossRefGoogle Scholar
  34. 34.
    G. Fu, L. Ma, M. Gan, X. Zhang, M. Jin, Y. Lei, P. Yang, M. Yan, Synth. Met. 224, 36–45 (2017)CrossRefGoogle Scholar
  35. 35.
    Q. Rong, L.-L. Long, X. Zhang, Y.-X. Huang, H.-Q. Yu, Appl. Energy 153, 63–69 (2015)CrossRefGoogle Scholar
  36. 36.
    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Func. Mater. 24, 934–942 (2014)CrossRefGoogle Scholar
  37. 37.
    J.W. Lee, J.M. Ko, J.-D. Kim, J. Phys. Chem. C 115, 19445–19454 (2011)CrossRefGoogle Scholar
  38. 38.
    J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, J. Mater. Chem. A 1, 1963–1968 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Yang, X. Wu, C. Chen, H. Dong, W. Hu, X. Wang, Chem. Commun. 48, 2773–2775 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Han, K.C. Roh, M.R. Jo, Y.-M. Kang, Chem. Commun. 49, 7067–7069 (2013)CrossRefGoogle Scholar
  41. 41.
    J.S. Chen, C. Guan, Y. Gui, D.J. Blackwood, ACS Appl. Mater. Interfaces 9, 496–504 (2017)CrossRefGoogle Scholar
  42. 42.
    H. Liu, J. Zhang, B. Zhang, L. Shi, S. Tan, L. Huang, Electrochim. Acta 138, 69–78 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Yan, B. Li, W. Guo, H. Pang, H. Xue, J. Power Sour. 329, 148–169 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Zheng, H. Xue, H. Pang, Coord. Chem. Rev. 373, 2–21 (2018)CrossRefGoogle Scholar
  45. 45.
    L. An, Q. Ren, W. Li, K. Xu, Y. Cao, T. Ji, R. Zou, Z. Chen, J. Hu, J. Mater. Chem. A 3, 11503–11510 (2015)CrossRefGoogle Scholar
  46. 46.
    F. Zhang, Y. Bao, S. Ma, L. Liu, X. Shi, J. Mater. Chem. A 5, 7474–7481 (2017)CrossRefGoogle Scholar
  47. 47.
    W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, Acs Sustain. Chem. Eng. 5, 4144–4153 (2017)CrossRefGoogle Scholar
  48. 48.
    N.A. Alhebshi, R.B. Rakhi, H.N. Alshareef, J. Mater. Chem. A 1, 14897–14903 (2013)CrossRefGoogle Scholar
  49. 49.
    L.C. Wu, Y.J. Chen, M.L. Mao, Q.H. Li, M. Zhang, ACS Appl. Mater. Interfaces 6, 5168–5174 (2014)CrossRefGoogle Scholar
  50. 50.
    W. Hong, J. Wang, P. Gong, J. Sun, L. Niu, Z. Yang, Z. Wang, S. Yang, J. Power Sour. 270, 516–525 (2014)CrossRefGoogle Scholar
  51. 51.
    R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, ACS Appl. Mater. Interfaces 9, 8880–8890 (2017)CrossRefGoogle Scholar
  52. 52.
    Y. Zhu, Z. Wu, M. Jing, W. Song, H. Hou, X. Yang, Q. Chen, X. Ji, Electrochim. Acta 149, 144–151 (2014)CrossRefGoogle Scholar
  53. 53.
    M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D.G. Evans, X. Duan, Chem. Mater. 24, 1192–1197 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChongqing Jiaotong UniversityChongqingPeople’s Republic of China
  2. 2.College of Chemistry & Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations