Advertisement

Preparation and investigation of suitability of gadolinium oxide nanoparticle doped polyvinyl alcohol films for optoelectronic applications

  • S. N. Madhuri
  • K. S. Hemalatha
  • K. RukmaniEmail author
Article
  • 17 Downloads

Abstract

Gd2O3 nanoparticles synthesized by solution combustion method were used to prepare PVA-Gd2O3 nanocomposite films of varying concentrations (2 wt%–6 wt% of filler) by solution casting method. Being a rare earth oxide, gadolinium oxide was expected to exhibit good photoluminescence and the nanocomposite was expected to be flexible as well. The Gd2O3 nanoparticles prepared were found to be in cubic phase with an average size of 19 nm. Raman spectra showed the incorporation of Gd2O3 into the polymer matrix. Scanning electron microscope images revealed that the particles were porous in nature, agglomerated and distributed evenly on the surface of the film in the form of clusters. The UV–Visible absorption spectra gave direct optical energy band gap value in the range 5.78–4.86 eV. Both band gap as well as the Urbach energy are seen to decrease with increasing concentration of the dopant. Four prominent photoluminescence peaks were observed in all the three composite films in the UV region (318 nm), deep blue region (396 nm), blue region (477 nm) and green region (553 nm). The color purity of the films using CIE coordinates was found to be the highest, 82.81%, in the 2 wt% film making this film a promising material for blue OLED’s and blue flexible screens.

Notes

Acknowledgement

The authors are grateful to INUP, IISc, CeNSE, Bangalore, funded by Meity, Govt. of India for providing characterization facilities. One of the authors S.N.M. thanks Shivaraja Ittigi for constant support throughout the work.

References

  1. 1.
    T. Hanemann, D.V. Szabó, Materials 3, 3468 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Sorrentino, G. Gorrasi, V. Vittoria, Trends Food Sci. Technol. 18, 84 (2007)CrossRefGoogle Scholar
  3. 3.
    H.M. de Azeredo, Food Res. Int. 42, 1240 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Harsányi, Sens. Actuators A 46-47, 85 (1995)CrossRefGoogle Scholar
  5. 5.
    B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699 (2004)CrossRefGoogle Scholar
  6. 6.
    Y.Y. Zhang, L.F. Shen, E.Y.B. Pun, B.J. Chen, H. Lin, Opt. Commun. 311, 111 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Shi, J. Liu, Y. Yang, J. App. Phys. 87, 4254 (2000)CrossRefGoogle Scholar
  8. 8.
    J.R.H. Shaw-Stewart, T. Mattle, T.K. Lippert, M. Nagel, F.A. Nuesch, A. Wokaun, J. Appl. Phys. 113, 043104 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Geffroy, P. Roy, C. Prat, Polym. Int. 55, 572 (2006)CrossRefGoogle Scholar
  10. 10.
    R.B. Salikhov, Y.N. Biglova, A.G. Mustafin, New Organic Polymers for Solar Cells, ed By S. Ameen, (IntechOpen, London, 2018), p-83Google Scholar
  11. 11.
    J. Tsung, D.J. Burgess, Biodegradable polymers in drug delivery system, ed. By J. Siepmann, R.A. Siegel, M.J. Rathbone, (Springer, New York, 2012), p-107Google Scholar
  12. 12.
    D. Feldman, J. Macromol. Sci. Part A 53, 55 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Musikhin, L. Bakueva, E.H. Sargent, A. Shik, J. Appl. Phys. 91, 6679 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Peres, L.C. Costa, A. Neves, M.J. Soares, T. Monteiro, A.C. Esteves, A. Barros-Timmons, T. Trindade, A. Kholkin, E. Alves, Nanotechnology 9, 1969 (2005)CrossRefGoogle Scholar
  15. 15.
    Z.H. Guo, S.Y. Wei, B. Shedd, R. Scaffaro, T. Pereira, H.T. Hahn, J. Mater. Chem. 17, 806 (2007)CrossRefGoogle Scholar
  16. 16.
    H. Althues, P. Pötschke, G.M. Kim, S. Kaskel, J. Nanosci. Nanotechnol. 9, 2739 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Sun, H.J. Sue, Appl. Phys. Lett. 94, 253106 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Mishra, V. Misra, M.S. Mehata, T.C. Pant, H.B. Tripathi, J. Phys. Chem. A 108, 2346 (2004)CrossRefGoogle Scholar
  19. 19.
    E.M. Amin, N. Karmakar, B. Winther-Jensen, Prog. Electromagnet. Res. 54, 149 (2013)CrossRefGoogle Scholar
  20. 20.
    W. Liu, Z. Wu, Y. Wang, Z. Tang, J. Du, L. Yuan, D. Li, H. Chen, J. Mater. Chem. B 2, 4272 (2014)CrossRefGoogle Scholar
  21. 21.
    S.B. Aziz, J. Elec. Mater. 45, 736 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Al-Taa’y, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Int. J. Polym. Sci. 2014, 697809 (2014)Google Scholar
  23. 23.
    T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spect. 2015, 204867 (2015)Google Scholar
  24. 24.
    G.N.H. Kumar, J.L. Rao, N.O. Gopal, K.V. Narasimhulu, R.P.S. Chakradhar, A.V. Rajulu, Polymer 45, 5407 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Pattabi, B.S. Amma, K. Manzoor, G. Sanjeev, Sol. Energy Mater. Sol. Cells 91, 1403 (2007)CrossRefGoogle Scholar
  26. 26.
    K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, RSC Adv. 7, 15084 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Qiu, Y. Zhou, M. Lu, A. Zhang, Q. Ma, Acta Mater. 55, 2615 (2007)CrossRefGoogle Scholar
  28. 28.
    P.K. Shahi, A.K. Singh, S.B. Rai, B. Ullrich, Sens. Actuators A. Phys. 222, 255 (2015)CrossRefGoogle Scholar
  29. 29.
    A.J. Kenyon, Prog. Quantum Electron. 26, 225 (2002)CrossRefGoogle Scholar
  30. 30.
    K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Nichkova, D. Dosev, R. Perron, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Bioanal. Chem. 384, 631 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Spectrochim Acta Part A 96, 532 (2012)CrossRefGoogle Scholar
  33. 33.
    R.K. Tamrakar, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 550 (2014)CrossRefGoogle Scholar
  34. 34.
    K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials combustion synthesis, properties and applications, (World Scientific Publishing Co. Pte. Ltd., Singapore, 2008), pp. 45-52Google Scholar
  35. 35.
    R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, Polymer 47, 3591 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Abdelaziz, E.M. Abdelrazek, Phys. B 390, 1 (2007)CrossRefGoogle Scholar
  37. 37.
    N.B.R. Kumar, V. Crasta, R.F. Bhajantri, B.M. Praveen, J. of Poly. (2014) 846140Google Scholar
  38. 38.
    I. Omkaram, R.P.S. Chakradhar, J.L. Rao, Phys. B 388, 318 (2007)CrossRefGoogle Scholar
  39. 39.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, R.P.S. Chakradhar, Phys. B Phys. 406, 1639 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Yan, Y. Huang, Y.E. Miao, W.W. Tjiu, T. Liu, J. Hazard. Mater. 283, 730 (2015)CrossRefGoogle Scholar
  41. 41.
    N. Luo, X. Tian, C. Yang, J. Xiao, W. Hu, D. Chen, L. Li, Phys. Chem. Chem. Phys. 15, 12235 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Majeed, S.A. Shivashankar, Rapid. J. Mater. Chem. B. 2, 5585 (2014)CrossRefGoogle Scholar
  43. 43.
    M.O. Reddy, B.C. Babu, Indian J.Mater. Sci. 2015, 927364 (2015)Google Scholar
  44. 44.
    Y. Dwivedi, A. Bahadur, S.B. Rai, J. Appl. Phys. 110, 043103 (2011)CrossRefGoogle Scholar
  45. 45.
    F. Benz, J.A. Guerra, Y. Weng, R. Weingartner, H.P. Strunk, Phys. Status Solidi C 10, 109 (2012)CrossRefGoogle Scholar
  46. 46.
    L.H. Slooff, A. Van Blaaderen, A. Polman, J. Appl. Phys. 91, 3955 (2002)CrossRefGoogle Scholar
  47. 47.
    M. Zikriya, Y.F. Nadaf, C. Manjunath, C.G. Renuka, J. Mater. Sci. 29, 16824 (2018)Google Scholar
  48. 48.
    C. Yoon, J. Choi, Bull. Korean Chem. Soc. 30, 1821 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBengaluruIndia
  2. 2.Department of PhysicsMaharani Science College for WomenBengaluruIndia

Personalised recommendations