Advertisement

On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K

  • Haziret Durmuş
  • Mert YıldırımEmail author
  • Şemsettin Altındal
Article
  • 12 Downloads

Abstarct

This study presents electrical characteristics of n-GaAs based Schottky barrier diodes (SBDs) with Rhenium (Re) rectifier contacts. The electrical characteristics of the Re/n-GaAs SBDs were investigated utilizing the forward bias current–voltage (IF–VF) data collected in temperature range of 60–400 K. The values of ideality factor (n) and zero-bias barrier height (ΦBo) were found as 9.10 and 0.11 eV for 60 K, and 1.384 and 0.624 eV for 400 K, respectively, on the basis of thermionic-emission theory. The conventional Richardson plot deviated from linearity at low temperatures and the Richardson constant value (A*) was obtained quite lower than the theoretical value for this semiconductor (8.16 A cm−2 K−2). nkT/qkT/q plot shows that the field-emission may be dominant mechanism at low temperatures as a result of tunneling via surface states since the studied n-GaAs’s doping concentration is on the order of 1018 cm−3, i.e. at high values so leads to tunneling. On the other hand, ΦBon, ΦBoq/2kT and (n−1 − 1)–q/2kT plots exhibit linearity but this linearity is observed for two temperature regions (60–160 K and 180–400 K) due the presence of double Gaussian distribution (GD) of the barrier height. Therefore, the standard deviation value was obtained from the plot of ΦBoq/2kT and it was used for modifying the conventional Richardson plot into the modified Richardson plot by which the values of mean barrier height and A* were obtained as 0.386 eV and 15.55 A cm−2 K−2 and 0.878 eV and 8.35 A cm−2 K−2 for the low and high temperature regions, respectively. As a result, IFVFT characteristics of the Re/n-GaAs SBDs were successfully elucidated by double-GD of barrier height.

Notes

References

  1. 1.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  2. 2.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York and London, 1984)CrossRefGoogle Scholar
  3. 3.
    E.H. Rhoderick, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1978)Google Scholar
  4. 4.
    H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589–1601 (1971)CrossRefGoogle Scholar
  5. 5.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp. 117–129Google Scholar
  6. 6.
    H.H. Güttler, J.H. Werner, Influence of barrier inhomogeneities on noise at Schottky contacts. Appl. Phys. Lett. 56, 1113–1115 (1990)CrossRefGoogle Scholar
  7. 7.
    R.T. Tung, J.P. Sullivan, F. Schrey, On the inhomogeneity of Schottky barriers. Mater. Sci. Eng., B 14, 266–280 (1992)CrossRefGoogle Scholar
  8. 8.
    R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Correlation between barrier height and interface structure of Ag/Si (111) Schottky diodes. Surf. Sci. 324, 249–256 (1995)CrossRefGoogle Scholar
  9. 9.
    R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1–138 (2001)CrossRefGoogle Scholar
  10. 10.
    M.K. Hudait, K.P. Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid State Electron. 45, 133–141 (2001)CrossRefGoogle Scholar
  11. 11.
    R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)CrossRefGoogle Scholar
  12. 12.
    J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403–7424 (1991)CrossRefGoogle Scholar
  13. 13.
    Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid States Electron 29, 633–638 (1986)CrossRefGoogle Scholar
  14. 14.
    W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol., B 17, 1867–1876 (1999)CrossRefGoogle Scholar
  15. 15.
    J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)CrossRefGoogle Scholar
  16. 16.
    M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, Electrical properties and the role of inhomogeneities at the polyvinylalcohol/n-InP Schottky barrier interface. J. Appl. Polym. Sci. 131, 39773 (2014)Google Scholar
  17. 17.
    V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices Microstruct. 67, 242–255 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Janardhanam, A.A. Kumar, V.R. Reddy, P.N. Reddy, Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (100). J. Alloy. Compd. 485, 467–472 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Alialy, A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Electronic transport of Au/(Ca1.9Pr0.1Co4Ox)/n-Si structures analysed over a wide temperature range. Philos. Mag. 95, 1448–1461 (2015)CrossRefGoogle Scholar
  20. 20.
    E. Arslan, Ş. Altındal, S. Özçelik, E. Özbay, Tunneling current via dislocations in Schottky diodes on AlInN/AlN/GaN heterostructures. Semicond. Sci. Technol. 24, 075003 (2009)CrossRefGoogle Scholar
  21. 21.
    E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range. Sens. Actuators, A 194, 259–268 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes. J. Appl. Phys. 116, 083709 (2014)CrossRefGoogle Scholar
  23. 23.
    F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695–707 (1966)CrossRefGoogle Scholar
  24. 24.
    S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altındal, Current–transport mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky diodes in the temperature range between 220 K and 380 K. J. Electron. Mater. 47, 6945–6953 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A Mater. 123, 560 (2017)CrossRefGoogle Scholar
  26. 26.
    İ. Taşçıoğlu, S.O. Tan, F. Yakuphanoğlu, Ş. Altındal, Effectuality of barrier height inhomogeneity on the current–voltage–temperature characteristics of metal-semiconductor structures with CdZnO interlayer. J. Electron. Mater. 47, 6059–6066 (2018)CrossRefGoogle Scholar
  27. 27.
    S.A. Yerişkin, M. Balbaşı, S. Demirezen, Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J. Phys. 91, 421–430 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Chand, J. Kumar, Evidence for the double distribution of barrier heights in Pd2Si/n-Si Schottky diodes from I–V–T measurements. Semicond. Sci. Technol. 11, 1203–1208 (1996)CrossRefGoogle Scholar
  29. 29.
    A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)Google Scholar
  30. 30.
    Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Zhu, S. Bai, H. Zhang, Y. Ye, W. Gao, Rhenium used as an interlayer between carbon–carbon composites and iridium coating: adhesion and wettability. Surf. Coat. Technol. 235, 68–74 (2013)CrossRefGoogle Scholar
  32. 32.
    H.S. Venugopalan, S.E. Mohney, Thermally stable rhenium Schottky contacts to n-GaN. Appl. Phys. Lett. 73, 1242–1244 (1998)CrossRefGoogle Scholar
  33. 33.
    G.Y. McDaniel, S.T. Fenstermaker, W.V. Lampert, P.H. Holloway, Rhenium ohmic contacts on 6H-SiC. J. Appl. Phys. 96, 5357–5364 (2004)CrossRefGoogle Scholar
  34. 34.
    N. Şimşir, H. Şafak, Ö.F. Yüksel, M. Kuş, Investigation of current–voltage and capacitance–voltage characteristics of Ag/perylene-monoimide/n-GaAs Schottky diode. Curr. Appl. Phys. 12, 1510–1514 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Soylu, M. Gülen, S. Sönmezoğlu, Temperature-dependent model for hole transport mechanism in a poly(1.8-diaminocarbazole)/Si structure. Philos. Mag. 96, 2600–2614 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Saad, A. Kassis, Analysis of illumination-intensity-dependent j–V characteristics of ZnO/CdS/CuGaSe2 single crystal solar cells. Sol. Energy Mater. Sol. Cells 77, 415–422 (2003)CrossRefGoogle Scholar
  37. 37.
    T. Giaddui, L.G. Earwaker, K.S. Forcey, B.J. Aylett, I.S. Harding, A study on the metallisation and stabilisation of porous silicon. Nucl. Instrum. Methods B 113, 201–204 (1996)CrossRefGoogle Scholar
  38. 38.
    J. Thomas, J. Schumann, W. Pitschke, Characterization of rhenium-silicon thin films. Fresenius J. Anal. Chem. 358, 325–328 (1997)CrossRefGoogle Scholar
  39. 39.
    V. Petrovich, M. Haurylau, S. Volchek, Rhenium deposition on a silicon surface at the room temperature for application in microsystems. Sens. Actuators A Phys. 99, 45–48 (2002)CrossRefGoogle Scholar
  40. 40.
    R. Schrebler, T.P. Cury, C. Suarez, E. Munoz, F. Vera, R. Cordova, H. Gomez, J.R. Ramos-Barrado, D. Leinen, E.A. Dalchiele, Study of the electrodeposition of rhenium thin films by electrochemical quartz microbalance and X-ray photoelectron spectroscopy. Thin Solid Films 483, 50–59 (2005)CrossRefGoogle Scholar
  41. 41.
    A.N. Saxena, Forward current-voltage characteristics of Schottky barriers on n-type silicon. Surf. Sci. 13, 151–171 (1969)CrossRefGoogle Scholar
  42. 42.
    C.R. Crowell, V.L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid State Electron. 12, 89–105 (1969)CrossRefGoogle Scholar
  43. 43.
    M. Ravinandan, P. Koteswara, V.R. Reddy, Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n-type GaN in a wide temperature range. Semicond. Sci. Technol. 24, 035004 (2009)CrossRefGoogle Scholar
  44. 44.
    K. Çınar, N. Yıldırım, C. Coşkun, A. Türüt, Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes. J. Appl. Phys. 106, 073717 (2009)CrossRefGoogle Scholar
  45. 45.
    M.H. Al-Dharob, H.E. Lapa, A. Kökce, A.F. Özdemir, D.A. Aldemir, S. Altındal, The investigation of current-conduction mechanisms (CCMs) in Au/(0.07Zn-PVA)/n-4H-SiC (MPS) type Schottky diodes (SDs) by using (I–V–T) measurements. Mater. Sci. Semicond. Proces. 85, 98–105 (2018)CrossRefGoogle Scholar
  46. 46.
    İ. Taşçıoğlu, U. Aydemir, Ş. Altındal, B. Kınacı, S. Özçelik, Analysis of the forward and reverse bias I–V characteristics on Au/(PVA:Zn)/n-Si Schottky barrier diodes in the wide temperature range. J. Appl. Phys. 109, 054502 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceSelçuk UniversityKonyaTurkey
  2. 2.Department of Mechatronics Engineering, Faculty of EngineeringDüzce UniversityDüzceTurkey
  3. 3.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations