Metal oxide nanohybrids-based low-temperature sensors for NO2 detection: a short review

  • Amit Mishra
  • Soumen BasuEmail author
  • Nagaraj P. ShettiEmail author
  • Kakarla Raghava ReddyEmail author


A gas sensor is a device used to monitor and quantify the leakage or presence of harmful gases in the environment. The NO2 is mainly emitted from vehicle exhausts, industrial chimneys, and combustion of fossil fuels. It is among the harmful gases which are danger to human beings and is the cause of acid rain. Metal oxides (MOs) have been proven to be effective gas sensors, however, their high operating temperature hampers their practical use. Hence, MOs supported upon graphene-based materials tend to have low operating temperatures since graphene provides a large number of active sites for gas adsorption upon MO surface. It also facilitates charge transfer from MO surface to adsorbed gas molecules. On the other hand, graphene-based materials have high selectivity for NO2. Upon functionalization of graphene with –SO3H groups tend to reduce the response and recovery time of the sensor. Also sensing of NO2 by MO depends upon its p-type or n-type nature. The p-type MOs do not have a better response for NO2 than n-type sensors, however, upon compositing them with functionalized graphene, their response enhances and they show better selectivity towards NO2. Also, creating defects like oxygen vacancies tend to lower the operating temperature of MO-based gas sensors and makes them more selective towards NO2. In this minor review, MO-based sensors for room temperature sensing of NO2 have been discussed taking into account their response, recovery time, sensitivity and selectivity.



  1. 1.
    Z. Xiao, L.B. Kong, X. Li, S. Yu, X. Li, Y. Jiang, Z. Yao, S. Ye, C. Wang, T. Zhang, Recent development in nanocarbon materials for gas sensor applications. Sens Actuators B Chem 274, 235–267 (2018)CrossRefGoogle Scholar
  2. 2.
    H.J. Cortes, B. Winniford, J. Luong, M. Pursch, Comprehensive two-dimensional gas chromatography review. J Sep Sci 32, 883–904 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Mirzaei, S.S. Kim, H.W. Kim, Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances. J Hazard Mater 357, 314–331 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Mirzaei, B. Hashemi, K. Janghorban, α-Fe2O3 based nanomaterials as gas sensors. J Mater Sci Mater Electron 27, 3109–3144 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B Chem 237, 749–775 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas Sci Technol 24, 012004 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Länge, B.E. Rapp, M. Rapp, Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391, 1509–1519 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Barochi, J. Rossignol, M. Bouvet, Development of microwave gas sensors. Sens Actuators B Chem 157, 374–379 (2011)CrossRefGoogle Scholar
  9. 9.
    N.P. Shetti, D. Nayak, S. Malode, K.R. Reddy, S. Shukla, T. Aminabhavi, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal Chim Acta 1051, 58–72 (2019)CrossRefGoogle Scholar
  10. 10.
    N.P. Shetti, D. Nayak, S. Malode, K.R. Reddy, S. Shukla, T. Aminabhavi, Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes (Biointerfaces, Colloids Surf B, 2019)CrossRefGoogle Scholar
  11. 11.
    N.P. Shetti, D. Nayak, G.T. Kuchinad, R.R. Naik, Electrochemical behavior of thiosalicylic acid at γ-Fe2O3 nanoparticles and clay composite carbon electrode. Electrochim Acta 269, 204–211 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Bukkitgar, N.P. Shetti, Fabrication of a TiO2 and clay nanoparticle composite electrode as a sensor. Anal Methods 9, 4387–4393 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Bukkitgar, N.P. Shetti, R. Kulkarni, Electro-oxidation and determination of 2-thiouracil at TiO2 nanoparticles-modified gold electrode. Surf Interfaces 6, 127–133 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Yamazoe, K. Shimanoe, Theory of power laws for semiconductor gas sensors. Sens Actuators B Chem 128, 566–573 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Goldoni, V. Alijani, L. Sangaletti, L. D’Arsiè, Advanced promising routes of carbon/metal oxides hybrids in sensors: a review. Electrochim Acta 266, 139–150 (2018)CrossRefGoogle Scholar
  16. 16.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10, 5469–5502 (2010)CrossRefGoogle Scholar
  17. 17.
    N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185, 213 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Kaps, S. Bhowmick, J. Grottrup, V. Hrkac, D. Stauffer, H. Guo, O.L. Warren, J. Adam, L. Kienle, A.M. Minor, Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2, 2985–2993 (2017)CrossRefGoogle Scholar
  19. 19.
    V. Postica, J. Gröttrup, R. Adelung, O. Lupan, A.K. Mishra, N.H. de Leeuw, N. Ababii, J.F. Carreira, J. Rodrigues, N.B. Sedrine, Multifunctional materials: a case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides. Adv Funct Mater 27, 1604676 (2017)CrossRefGoogle Scholar
  20. 20.
    Ӧ. Çelikbilek, D. Jauffrès, E. Siebert, L. Dessemond, M. Burriel, C.L. Martin, E. Djurado, Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells. J Power Sources 333, 72–82 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Dutt, K. Suhasini, A. Ratan, J. Shah, R.K. Kotnala, V. Singh, J Mater Sci Mater Electron 29, 20506–20516 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Navale, S. Navale, N. Ramgir, F. Stadler, S. Gupta, D. Aswal, V. Patil, Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens Actuators B Chem 251, 551–563 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Kwon, J.-S. Yoon, Y. Lee, D.Y. Kim, C.-K. Baek, J.K. Kim, An array of metal oxides nanoscale hetero pn junctions toward designable and highly-selective gas sensors. Sens Actuators B Chem 255, 1663–1670 (2018)CrossRefGoogle Scholar
  24. 24.
    W. Yuan, G. Shi, Graphene-based gas sensors. J Mater Chem A 1, 10078–10091 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Hassan, E. Haque, K.R. Reddy, A. Minett, J. Chen, V. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–11994 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Hassan, K.R. Reddy, E. Haque, A. Minett, V. Gomes, High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410, 43–51 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat Mater 6, 652 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20, 445502 (2009)CrossRefGoogle Scholar
  29. 29.
    S.S. Varghese, S. Lonkar, K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene-based gas sensors. Sens Actuators B Chem 218, 160–183 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, A. Lichtenstein, Molecular doping of graphene. Nano Lett 8, 173–177 (2008)CrossRefGoogle Scholar
  31. 31.
    O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B 77, 125416 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv Mater 28, 795–831 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene. Adv Mater 23, 1089–1115 (2011)CrossRefGoogle Scholar
  34. 34.
    N. Tammanoon, A. Wisitsoraat, C. Sriprachuabwong, D. Phokharatkul, A. Tuantranont, S. Phanichphant, C. Liewhiran, Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7, 24338–24352 (2015)CrossRefGoogle Scholar
  35. 35.
    S.-J. Choi, F. Fuchs, R. Demadrille, B. Grévin, B.-H. Jang, S.-J. Lee, J.-H. Lee, H.L. Tuller, I.-D. Kim, Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl Mater Interfaces 6, 9061–9070 (2014)CrossRefGoogle Scholar
  36. 36.
    A.C. Crowther, A. Ghassaei, N. Jung, L.E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6, 1865–1875 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Cölfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42, 2350–2365 (2003)CrossRefGoogle Scholar
  38. 38.
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10, 780 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B Chem 202, 272–278 (2014)CrossRefGoogle Scholar
  40. 40.
    G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5, 1154–1164 (2011)CrossRefGoogle Scholar
  41. 41.
    P.-G. Su, C.-T. Lee, C.-Y. Chou, K.-H. Cheng, Y.-S. Chuang, Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties. Sens Actuators B Chem 139, 488–493 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Cui, H. Pu, E.C. Mattson, Z. Wen, J. Chang, Y. Hou, C.J. Hirschmugl, J. Chen, Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide. Anal Chem 86, 7516–7522 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95, 232105 (2009)CrossRefGoogle Scholar
  44. 44.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett 8, 3137–3140 (2008)CrossRefGoogle Scholar
  45. 45.
    W. Yuan, A. Liu, L. Huang, C. Li, G. Shi, High-performance NO2 sensors based on chemically modified graphene. Adv Mater 25, 766–771 (2013)CrossRefGoogle Scholar
  46. 46.
    J.Z. Ou, C. Yao, A. Rotbart, J.G. Muir, P.R. Gibson, K. Kalantar-zadeh, Human intestinal gas measurement systems: in vitro fermentation and gas capsules. Trends Biotechnol 33, 208–213 (2015)CrossRefGoogle Scholar
  47. 47.
    J.L. Puckett, S.C. George, Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir Physiol Neurobiol 163, 166–177 (2008)CrossRefGoogle Scholar
  48. 48.
    M. Guarnieri, J.R. Balmes, Outdoor air pollution and asthma. The Lancet 383, 1581–1592 (2014)CrossRefGoogle Scholar
  49. 49.
    T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang, Y. Wang, Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res 11, 791–803 (2018)CrossRefGoogle Scholar
  50. 50.
    L. You, Y. Sun, J. Ma, Y. Guan, J. Sun, Y. Du, G. Lu, Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens Actuators B Chem 157, 401–407 (2011)CrossRefGoogle Scholar
  51. 51.
    K.R. Reddy, M. Hassan, V. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489, 1–16 (2015)CrossRefGoogle Scholar
  52. 52.
    X. Jie, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu, C. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens Actuators B Chem 220, 201–209 (2015)CrossRefGoogle Scholar
  53. 53.
    S. Zhu, X. Liu, Z. Chen, C. Liu, C. Feng, J. Gu, Q. Liu, D. Zhang, Synthesis of Cu-doped WO3 materials with photonic structures for high-performance sensors. J Mater Chem 20, 9126–9132 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W.-J. Moon, D.-M. Song, Synthesis of WO3@ Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv 2, 1356–1363 (2012)CrossRefGoogle Scholar
  55. 55.
    H.-R. Kim, K.-I. Choi, J.-H. Lee, S.A. Akbar, Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sens Actuators B Chem 136, 138–143 (2009)CrossRefGoogle Scholar
  56. 56.
    J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B Chem 140, 319–336 (2009)CrossRefGoogle Scholar
  57. 57.
    X. An, C.Y. Jimmy, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22, 8525–8531 (2012)CrossRefGoogle Scholar
  58. 58.
    J. Qin, M. Cao, N. Li, C. Hu, Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21, 17167–17174 (2011)CrossRefGoogle Scholar
  59. 59.
    P.-G. Su, S.-L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132, 398–405 (2015)CrossRefGoogle Scholar
  60. 60.
    P.-G. Su, T.-T. Pan, Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method. Mater Chem Phys 125, 351–357 (2011)CrossRefGoogle Scholar
  61. 61.
    L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl Mater Interfaces 6, 7426–7433 (2014)CrossRefGoogle Scholar
  62. 62.
    H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B Chem 190, 472–478 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Liu, Z. Wang, Y. Zhang, J. Li, T. Zhang, Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sens Actuators B Chem 228, 134–143 (2016)CrossRefGoogle Scholar
  64. 64.
    H. Wang, K. Dou, W.Y. Teoh, Y. Zhan, T.F. Hung, F. Zhang, J. Xu, R. Zhang, A.L. Rogach, Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2 + -doped SnO2 nanostructures. Adv Funct Mater 23, 4847–4853 (2013)Google Scholar
  65. 65.
    Y. Wei, C. Chen, G. Yuan, S. Gao, SnO2 nanocrystals with abundant oxygen vacancies: preparation and room temperature NO2 sensing. J Alloy Compd 681, 43–49 (2016)CrossRefGoogle Scholar
  66. 66.
    M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J Phys Chem C 112, 19540–19546 (2008)CrossRefGoogle Scholar
  67. 67.
    Y. Li, B. Zu, Y. Guo, K. Li, H. Zeng, X. Dou, Surface superoxide complex defects-boosted ultrasensitive ppb-level NO2 gas sensors. Small 12, 1420–1424 (2016)CrossRefGoogle Scholar
  68. 68.
    Y. Qin, Z. Ye, DFT study on interaction of NO2 with the vacancy-defected WO3 nanowires for gas-sensing. Sens Actuators B Chem 222, 499–507 (2016)CrossRefGoogle Scholar
  69. 69.
    Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu, G. Lu, Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens Actuators B Chem 266, 812–822 (2018)CrossRefGoogle Scholar
  70. 70.
    H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem 192, 607–627 (2014)CrossRefGoogle Scholar
  71. 71.
    N. Tang, B. Chen, Y. Xia, D. Chen, X. Jiao, Facile synthesis of Cu2O nanocages and gas sensing performance towards gasoline. RSC Adv 5, 54433–54438 (2015)CrossRefGoogle Scholar
  72. 72.
    A. Abulizi, G.-H. Yang, J.-J. Zhu, One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites. Ultrason Sonochem 21, 129–135 (2014)CrossRefGoogle Scholar
  73. 73.
    K.R. Reddy, B.C. Sen, C.H. Ho, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scrip Mater 58, 1010–1013 (2008)CrossRefGoogle Scholar
  74. 74.
    S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134, 4905–4917 (2012)CrossRefGoogle Scholar
  75. 75.
    J. Pan, W. Liu, L. Quan, N. Han, S. Bai, R. Luo, Y. Feng, D. Li, A. Chen, Cu2O and rGO hybridizing for enhancement of low-concentration NO2 sensing at room temperature. Ind Eng Chem Res 57, 10086–10094 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.Electrochemistry and Materials Group, Department of ChemistryK. L. E. Institute of Technology, Visvesvaraya Technological UniversityGokul, HubballiIndia
  3. 3.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia

Personalised recommendations