Advertisement

Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging

  • Sanjay Kumar
  • Maurya Sandeep Pradeepkumar
  • Akansha Dwivedi
  • Md. Imteyaz AhmadEmail author
Article
  • 26 Downloads

Abstract

With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat generated in electronic systems, appropriate materials must be developed as heat sinks. In this work, we report Ba0.7Sr0.3TiO3 nanoparticles, which were synthesized using a citrate gel method, used as reinforcements in a Cu matrix composite. These composites have shown the coefficient of thermal expansion value compatible to that of Si and GaAs at the same time having a superior thermal conductivity of 292.213 W/m K compared to SiC reinforced composites, making it a promising material for packaging applications in semiconductor industries.

Notes

References

  1. 1.
    K. Chu, C. Jia, Appl. Phys. A 111, 439 (2013)CrossRefGoogle Scholar
  2. 2.
    X. Qu, L. Zhang, M. Wu, S. Ren, Prog. Nat. Sci. 21, 189 (2011)CrossRefGoogle Scholar
  3. 3.
    M.G. Pecht, R. Agarwal, P. McCluskey, T. Dishongh, S. Javadpour, R. Mahajan, Electronic Packaging Materials And Their Properties, 1st edn. (CRC Press, Maryland, 1999), pp. 3–84Google Scholar
  4. 4.
    R.R. Tummmala, Fundamental of Microsystems Pacaging, 1st edn. (McGraw-Hill, New York, 2001)Google Scholar
  5. 5.
    P. Lall, M. Pecht, E.B. Hakim, Influence of Temperature on Microelectronics and System Reliability: A Physics of Failure Approach (CRC Press, Boca Raton, 1997)Google Scholar
  6. 6.
    C. Lasance, J. Rantala, J. Parry, Electron Cool. 7, 30 (2001)Google Scholar
  7. 7.
    C. Zweben, in Proceedings International Symposium on Advanced Packaging Materials Processes (2001), pp. 360–365Google Scholar
  8. 8.
    C. Zweben, JOM 44, 15 (1992)CrossRefGoogle Scholar
  9. 9.
    A. Fathy, O. El-Kady, Mater. Des. 46, 355 (2013)CrossRefGoogle Scholar
  10. 10.
    K.U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive, 1st edn. (Wiley, Weinheim, 2006)CrossRefGoogle Scholar
  11. 11.
    J.M. Molina, M. Rheme, J. Carron, L. Weber, Scr. Mater. 58, 393 (2008)CrossRefGoogle Scholar
  12. 12.
    J.W. Kaczmar, K. Pietrzak, W. Włosiński, J. Mater. Process. Technol. 106, 58 (2000)CrossRefGoogle Scholar
  13. 13.
    H.S. Lee, K.Y. Jeon, H.Y. Kim, S.H. Hong, J. Mater. Sci. 35, 6231 (2000)CrossRefGoogle Scholar
  14. 14.
    Th Schubert, A. Brendel, K. Schmid, Th Koeck, Ł. Ciupiński, W. Zieliński, T. Weißgärber, B. Kieback, Compos. A Appl. Sci. Manuf. 38, 2398 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Takenaka, Sci. Technol. Adv. Mater. 13, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Sheng, L. Wang, S. Li, B. Yin, X. Liu, W.-D. Wei, Sci. Rep. 10, 15–20 (2016).  https://doi.org/10.1038/srep27118 Google Scholar
  17. 17.
    A. Ioachim, M.I. Toacsana, M.G. Banciu, L. Nedelcu, A. Dutu, S. Antohe, C. Berbecaru, L. Georgescu, G. Stoica, H.V. Alexandru, Thin Solid Films 515, 6289 (2007)CrossRefGoogle Scholar
  18. 18.
    Z. Rubin, S.A. Sunshine, M.B. Heaney, I. Bloom, I. Balberg, Phys. Rev. B 59, 12196 (1999)CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Kim, Compos. Sci. Technol. 2114, 16 (2007)Google Scholar
  20. 20.
    M. Kataoka, T. Masuko, Elec. Engg. Jap 152, 1 (2005)CrossRefGoogle Scholar
  21. 21.
    P.K. Cheng-Hua Kuo, Acta Maetall et. Mater 43, 397 (1995)CrossRefGoogle Scholar
  22. 22.
    Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, J. Mater, Chem. C 33, 6752 (2014)Google Scholar
  23. 23.
    S.C. Hogg, A. Lambourne, A. Ogilvy, P.S. Grant, Scr. Mater. 55, 111 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Ma, Z.J. Wei, Y.D. Jia, Z.S. Yu, K.G. Prashanth, S.L. Yang, C.G. Li, L.X. Huang, J. Eckert, J. Alloys Compd. 709, 329 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Krüger, A. Mortensen, Mater Sci. Eng. 585, 396 (2013)CrossRefGoogle Scholar
  26. 26.
    C.A. Leon-Patiño, E.A. Aguilar-Reyes, M. Braulio-Sánchez, G. Rodríguez-Ortiz, E. Bedolla-Becerril, Mater. Des. 54, 845 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Korac, Z. Andic, M. Tasic, Ž. Kamberovic, J. Serb, Chem. Soc. 72, 1115 (2007)Google Scholar
  28. 28.
    B.S. Anggara, E. Handoko, B. Soegijono, in AIP Conference Proceedings (2014), pp. 109–111Google Scholar
  29. 29.
    G. Celebi Efe, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, Acta Phys. Pol. A 121, 251 (2012)Google Scholar
  30. 30.
    X. Lu, J. Zhu, Z. Liu, X. Xu, Y. Wang, Thin Solid Films 375, 15 (2000)CrossRefGoogle Scholar
  31. 31.
    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringIndian Institute of Technology, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations