Graphene oxide humidity sensor built entirely by additive manufacturing approaches

  • Farid AhmedEmail author
  • Amir Azhari
  • Ehsan Marzbanrad
  • Farzad Liravi
  • Usman Ali
  • Michael A. Pope
  • Ehsan Toyserkani


Graphene is emerging as an excellent material choice for high-performance electrical and electrochemical devices such as humidity sensors. The rapid technological evolution in additive manufacturing (AM) enables freedom to design and process multiple materials for scalable fabrication of sensors. Herein, we introduce a hybrid AM approach to fabricate a graphene-based humidity sensor and study its sensing performance. A powder-bed binder-jetting AM technique is used to build a porous 3D-structure of thermally reduced graphene oxide as the humidity sensing element. In parallel, a material extrusion AM approach is used to make a silicone-based hollow cube as the housing of the graphene structure. The AM fabricated sensor shows high sensitivity when tested in the relative humidity (RH) range of 6.4–97.3% with a rapid response time of 7 s at 45% RH due to the open porous structure formed by the binder-jetting approach. Sensing performance was investigated at low and medium RH in the temperature range of 25–80 °C and the device demonstrated a negligible temperature dependence. The presented graphene-based humidity sensor also shows good repeatability in RH measurements.



The authors would like to appreciate the financial support received from Natural Sciences and Engineering Research Council (NSERC) of Canada.


  1. 1.
    T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, Nano-Micro Lett. 8, 95 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Chen, C. Lu, Sens. Lett. 3, 274 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris, G. Katona, F. Tudorache, I. Petrila, F. Iacomi, Appl. Surf. Sci. 402, 410 (2017)CrossRefGoogle Scholar
  4. 4.
    M.-J. Kim, M.-S. Gong, Analyst 137, 1487 (2012)CrossRefGoogle Scholar
  5. 5.
    U. Kang, K.D. Wise, IEEE Trans. Electron Devices 47, 702 (2000)CrossRefGoogle Scholar
  6. 6.
    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Sci. Rep. 3, 2714 (2013)CrossRefGoogle Scholar
  7. 7.
    W.H. Lim, Y.K. Yap, W.Y. Chong, H. Ahmad, Sensors (Switzerland) 14, 24329 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Chi, Y.J. Liu, F. Wang, C. He, ACS Appl. Mater. Interfaces. 7, 19882 (2015)CrossRefGoogle Scholar
  9. 9.
    S.M. Balashov, O.V. Balachova, A.P. Filho, M.C.Q. Bazetto, M.G. de Almeida, ECS Trans. 49, 445 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Li, C. Deng, M. Yang, Sens. Actuators B Chem. 165, 7 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Yu, P. Xu, D.-W. Lee, X. Li, J. Mater. Chem. A 1, 4444 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Zilberman, R. Ionescu, X. Feng, K. Müllen, H. Haick, ACS Nano 5, 6743 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Sens. Actuators B Chem. 141, 441 (2009)CrossRefGoogle Scholar
  14. 14.
    X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Sens. Actuators B Chem. 156, 631 (2011)CrossRefGoogle Scholar
  15. 15.
    Q. Kuang, C. Lao, L.W. Zhong, Z. Xie, L. Zheng, J. Am. Chem. Soc. 129, 6070 (2007)CrossRefGoogle Scholar
  16. 16.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  17. 17.
    I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B Microelectron. Nanomater. Struct. 25, 2558 (2007)CrossRefGoogle Scholar
  18. 18.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Yao, X. Chen, J. Zhu, B. Zeng, Z. Wu, X. Li, Nanoscale Res. Lett. 7, 363 (2012)CrossRefGoogle Scholar
  20. 20.
    I. Jung, D. Dikin, S. Park, W. Cai, S.L. Mielke, R.S. Ruoff, J. Phys. Chem. C 112, 20264 (2008)CrossRefGoogle Scholar
  21. 21.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  22. 22.
    A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, M.C. Lemme, Nanoscale 7, 19099 (2015)CrossRefGoogle Scholar
  23. 23.
    D.A. Deen, E.J. Olson, M.A. Ebrish, S.J. Koester, IEEE Sens. J. 14, 1459 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 7, 11166 (2013)CrossRefGoogle Scholar
  25. 25.
    T.Q. Trung, L.T. Duy, S. Ramasundaram, N.E. Lee, Nano Res. 10, 2021 (2017)CrossRefGoogle Scholar
  26. 26.
    L.T. Duy, T.Q. Trung, V.Q. Dang, B.U. Hwang, S. Siddiqui, I.Y. Son, S.K. Yoon, D.J. Chung, N.E. Lee, Adv. Funct. Mater. 26, 4329 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Zhang, J. Tong, B. Xia, Sens. Actuators B Chem. 197, 66 (2014)CrossRefGoogle Scholar
  28. 28.
    P.-G. Su, C.-F. Chiou, Sens. Actuators B Chem. 200, 9 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, N.Y. Carbon, Int. J. Multiphase Flow 105, 23 (2016)Google Scholar
  30. 30.
    S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, Sci. Rep. 5, 17374 (2015)CrossRefGoogle Scholar
  31. 31.
    I. Nikolaou, H. Hallil, V. Conédéra, G. Deligeorgis, C. Dejous, D. Rebiere, IEEE Sens. J. 16, 7620 (2016)CrossRefGoogle Scholar
  32. 32.
    A.P. Taylor, L.F. Velásquez-García, Nanotechnology 26, 505301 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Hernandez-Rivera, G. Rodriguez-Roldan, R. Mora-Martinez, E. Suaste-Gomez, Sensors 17, 1009 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, M.A. Pope, N.Y. Carbon, Int. J. Multiphase Flow 119, 257 (2017)Google Scholar
  35. 35.
    Q. Ye, C. Wen, M. Xu, S.-L. Zhang, D. Wu, in 2015 IEEE 11th International Conference on ASIC (ASICON), Chengdu, China (2015).
  36. 36.
    W. Ji, S. Tjin, B. Lin, C. Ng, Sensors (Basel) 13, 14055 (2013)CrossRefGoogle Scholar
  37. 37.
    ASTM E104 Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions, 02, 1 (2014)Google Scholar
  38. 38.
    Y. Yao, X. Chen, H. Guo, Z. Wu, X. Li, Sens. Actuators B Chem. 161, 1053 (2012)CrossRefGoogle Scholar
  39. 39.
    Q. Huang, D. Zeng, S. Tian, C. Xie, Mater. Lett. 83, 76 (2012)CrossRefGoogle Scholar
  40. 40.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.AOMS Technologies Inc.MississaugaCanada
  3. 3.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations