Advertisement

Plasma jet printing for preparation of N-doped graphene electrode

  • Yuhua Wang
  • Ke Zhang
  • Ruixue Wang
  • Cheng Zhang
  • Fei Kong
  • Tao ShaoEmail author
Article
  • 19 Downloads

Abstract

Graphene, the 2-D allotrope of carbon, is well known for its remarkable electronic and optical properties. Nitrogen doping can manipulate local electronic structure and thus improve the performance of a graphene powered device. Therefore, developing a method of graphene production that is low in cost, simple in operation and high in controllability is important. It carries a vital value for the industrial applications of graphene materials in the future. For this study, graphene oxide (GO) and GO/AuNPs (gold nanoparticles) films were prepared using plasma jet printing technology. Then, a dielectric barrier discharge at a sub-atmospheric pressure in nitrogen gas was used to obtain N-doped and reduced graphene oxide (N-rGO). The microstructure of the sample was observed using a scanning electron microscope. Then, the materials were analyzed using X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Finally, the cyclic voltammetry profiles and galvanostatic charge/discharge curves of N-rGO and N-rGO/AuNPs capacitors were tested. Results have indicated that the ultimate materials with a porous structure after the nitrogen plasma treatment presented a pretty good capacitor performance.

Notes

References

  1. 1.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Miro, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537–6554 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Vali, S. Safa, D. Dideban, Investigating the mechanical properties of graphene and silicone and the fracture behavior of pristine and hydrogen functionalized silicone. J. Mater. Sci.: Mater. Electron. 29(23), 20522–20529 (2018)Google Scholar
  4. 4.
    Q. Wang, M.M. Song, C.L. Chen, Y. Wei, X. Zuo, X.K. Wang, Synthesis of graphene-based Pt nanoparticles by a one-step in situ plasma approach under mild conditions. Appl. Phy. Lett. 101(3), 033103 (2012)CrossRefGoogle Scholar
  5. 5.
    K.F. Chen, D.F. Xu, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Xu, M. Guo, S. Liu, S. Bian, Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Adv. 5(32), 25244–252249 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Wang, X. Zhang, X. Sun, Y. Ma, Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci. China Mater. 59(6), 412–420 (2016)CrossRefGoogle Scholar
  8. 8.
    X.T. Liang, K.F. Chen, D.F. Xue, A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported solloids. Adv. Energy Mater. 8(16), 1703329 (2018)CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5296), 666–669 (2004)CrossRefGoogle Scholar
  10. 10.
    V.P. Gusyin, S.G. Sharapov, Unconventional integer quantum hall effect in grapheme. Phys. Rev. Lett. 95(14), 146801 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Fujita, W. Kobayashi, C. Oshima, Novel structures of carbon layers on a Pt (111) surface. Surf. Interface Anal. 37(2), 120–123 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Mcallister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M.H. Alonso, D.L. Milius, R. Car, R.K. Prud’Homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRefGoogle Scholar
  13. 13.
    N.A. Kotov, I. Dekany, J.H. Fendler, Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8(8), 637–641 (1996)CrossRefGoogle Scholar
  14. 14.
    F. Liu, D.F. Xue, Electrochemical energy storage applications of “pristine” graphene produced by non-oxidative routes. Sci. China Technol. Sci. 58(11), 1841–1850 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem.-Eur. J. 15(25), 6116–6120 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRefGoogle Scholar
  17. 17.
    F.H. Kong, K.F. Chen, S.Y. Song, D.F. Xue, Metal organic framework derived CoFe@N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction. Inorg. Chem. Front. 5(8), 1962–1966 (2018)CrossRefGoogle Scholar
  18. 18.
    K.F. Chen, D.F. Xue, S. Komarneni, Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. J. Colloid Interface Sci. 487, 156–161 (2017)CrossRefGoogle Scholar
  19. 19.
    K.F. Chen, F. Liu, D.F. Xue, S. Komarneni, Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale 7(2), 432–439 (2015)CrossRefGoogle Scholar
  20. 20.
    K.F. Chen, S.Y. Song, F. Liu, D.F. Xue, Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44(17), 6230–6257 (2015)CrossRefGoogle Scholar
  21. 21.
    K.F. Chen, S.Y. Song, D.F. Xue, Beyond graphene: materials chemistry toward high performance inorganic functional materials. J. Mater. Chem. A 3(6), 2441–2453 (2015)CrossRefGoogle Scholar
  22. 22.
    T.H. Le, H. Tian, J. Cheng, Z. Huang, F. Kang, Y. Yang, High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers. Carbon 138, 325–336 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Han, G. Xu, H. Dou, D.R. MacFarlane, Porous Nitrogen-doped carbon microspheres derived from microporous polymeric organic frameworks for high performance electric double-layer capacitors. Chemistry 21(6), 2310–2314 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl. Mater. Interfaces. 6(4), 2657–2665 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Zhang, L. Lei, Y. Shang, Phosphorus and nitrogen dual doped ordered mesoporous carbon with tunable pore size for supercapacitors. J. Mater. Sci.: Mater. Electron. 27(4), 3531–3539 (2016)Google Scholar
  26. 26.
    K.S. Hazra, J. Rafiee, M.A. Rafiee, A. Mathur, S.S. Roy, J. McLauhglin, N. Koratkar, D.S. Misra, Thinning of multilayer graphene to monolayer graphene in a plasma environment. Nanotechnology 22(2), 025704 (2011)CrossRefGoogle Scholar
  27. 27.
    R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010)CrossRefGoogle Scholar
  28. 28.
    M.J. Hyung, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksayc, Y. Lin, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20(35), 7491–7496 (2010)CrossRefGoogle Scholar
  30. 30.
    N.A. Kumar, H. Nolan, N. McEvoy, E. Rezvani, R.L. Doyle, M.E.G. Lyonsb, G.S. Duesberg, Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 1(14), 4431–4435 (2013)CrossRefGoogle Scholar
  31. 31.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Yang, T.H. Le, F. Kang, M. Inagaki, Polymer blend techniques for designing carbon materials. Carbon 111, 546–568 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50(6), 2179–2188 (2012)CrossRefGoogle Scholar
  34. 34.
    F.M. Hassan, V. Chabot, J. Li, B.K. Kim, L.R. Sandoval, A. Yu, Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1(8), 2904–2912 (2013)CrossRefGoogle Scholar
  35. 35.
    Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, Facile synthesis of sandwich-like polyaniline/boron-doped grapheme nano hybrid for supercapacitors. Carbon 81, 552–563 (2015)CrossRefGoogle Scholar
  36. 36.
    C. Yang, L. Zhang, N. Hu, Z. Yang, Y. Su, S. Xu, M. Li, L. Yao, M. Hong, Y. Zhang, Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem. Eng. J. 309, 89–97 (2017)CrossRefGoogle Scholar
  37. 37.
    Z.K. Ghouri, M.S. Akhtar, A. Zahoor, N.A.M. Barakat, W. Han, M. Park, B. Pant, P.S. Saud, C.H. Lee, H.Y. Kim, High-efficiency super capacitors based on hetero-structured a-MnO2 nanorods. J. Alloys Compd. 642, 210–215 (2015)CrossRefGoogle Scholar
  38. 38.
    Z.K. Ghouri, N.A. Barakat, A.M. Alam, M. Park, T.H. Han, H.Y. Kim, Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int. J. Electrochem. Sci. 10(3), 2064–2071 (2015)Google Scholar
  39. 39.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRefGoogle Scholar
  40. 40.
    Z.K. Ghouri, N.A.M. Barakat, P.S. Saud, M. Park, B.S. Kim, H.Y. Kim, Supercapacitors based on ternary nanocomposite of TiO2 & Pt@graphenes. J. Mater. Sci.: Mater. Electron. 27(4), 3894–3900 (2016)Google Scholar
  41. 41.
    B. Borah, G. Rajitha, R.K. Dash, Correlation between the thickness and properties of the ethanol treated GO-PDMS based composite materials. J. Mater. Sci.: Mater. Electron. 29(23), 20216–20224 (2018)Google Scholar
  42. 42.
    K. Natori, D. Otani, N. Sano, Thickness dependence of the effective dielectric constant in a thin film capacitor. Appl. Phys. Lett. 73(5), 632–634 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Province Key Laboratory of Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Power Electronics and Electric DriveInstitute of Electrical Engineering, Chinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations