Characterization of Er3+ doped ZnTeTa semiconducting oxide glass

  • Gökhan Kilic
  • Ugur Gökhan IsseverEmail author
  • Erkan Ilik


Er3+ doped zinc-tellurite oxide glasses based on 24ZnO.72TeO2.(4 − x)Ta2O5·xEr2O3 with different compositions of Er2O3 (x = 0.5, 1, 1.5, 2% mol) have successfully been synthesized by the conventional melt-quenching technique. Structures of these glasses have been investigated by means of XRD, DSC and ATR–FTIR spectroscopy. XRD results demonstrated that these glasses were amorphous. DSC measurements gave us glassy transition temperatures (Tg), crys tallization temperatures (Tc) and melting temperatures (Tm). Thermal stability (ΔT) was calculated to vary between 141–152 °C. In addition, DSC also yielded information on the formation of some phases based on temperature. It was understood that TeO2 forming the glass network was found to be as TeO4 tbp and TeO3 tp within the structure since they gave the bands at 570–600 cm−1 and 660–760 cm−1 in FTIR spectra, respectively. Optical properties, optical gaps and Urbach energies of the glasses were determined and their refractive index values were calculated according to the optical gaps. Optical gaps were found to be within the range of 3.10–3.17 eV. 12 characteristic bands belonging to Er3+ were determined from the absorbance spectra of synthesized glasses. Electrical conductivity, resistivity and density, molar volume values were also obtained and the results were reported.



The research activity was supported by Eskisehir Osmangazi University, scientific research council with Grant Nos. 201519D25 and 201419D02.


  1. 1.
    H. Nasu, O. Matsusita, K. Kamiya, H. Kobayashi, K. Kubodera, J. Non-Cryst. Solids 124, 275 (1990)CrossRefGoogle Scholar
  2. 2.
    J.E. Stanworth, Nature 169, 581 (1952)CrossRefGoogle Scholar
  3. 3.
    G. Nunziconti, S. Bemeschi, M. Bettinelli, M. Breei, B. Chen, S. Pelli, A. Speghini, G.C. Righini, J. Non-Cryst. Solids 345 & 346, 343 (2004)Google Scholar
  4. 4.
    M.A. Sidkey, M.S. Gaafar, Phys. B 348, 46 (2004)CrossRefGoogle Scholar
  5. 5.
    R. El-Mallawany, Mater. Chem. Phys. 53, 93 (1998)CrossRefGoogle Scholar
  6. 6.
    B. Eraiah, Bull. Mater. Sci. 29, 375 (2006)CrossRefGoogle Scholar
  7. 7.
    N.B. Mohamed, A.K. Yahya, M.S.M. Deni, S.N. Mohamed, M.K. Halimah, H.A.A. Sidek, J. Non-Cryst. Solids 356, 1626 (2010)CrossRefGoogle Scholar
  8. 8.
    N. Rakov, G.S. Maciel, M.L. Sundheimer, L. de Menezes, A.S.L. Gomes, J. Appl. Phys. 92, 6337 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, Z. Jiang, J. Appl. Phys. 95, 3020 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Balda, J. Fernández, M.A. Arriandiaga, J.M. Fernández-Navarro, J. Phys.: Condens. Matter 19, 086223 (2007)Google Scholar
  11. 11.
    Y. Luo, J. Zhang, X. Zhang, X. Wang, J. Appl. Phys. 103, 063107 (2008)CrossRefGoogle Scholar
  12. 12.
    G.S. Murugan, T. Suzuki, Y. Ohishi, Appl. Phys. Lett. 86, 161109 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Chakraborty, H. Satou, H. Sakata, J. Appl. Phys. 82, 5520 (1997)CrossRefGoogle Scholar
  14. 14.
    R. Singh, J.S. Chakravarthi, Phys. Rev. B 55, 5550 (1997)CrossRefGoogle Scholar
  15. 15.
    P. Rani, R. Singh, Phys. B 448, 29 (2014)CrossRefGoogle Scholar
  16. 16.
    J.N. Ayuni, M.K. Halimah, Z.A. Talib, H.A.A. Sidek, W.M. Daud, A.W. Zaidan, A.M. Khamirul, IOP Conf. Series: Mater. Sci. Eng. 17, 012027 (2011)CrossRefGoogle Scholar
  17. 17.
    D.K. Mohanty, V.K. Rai, J. Disp. Technol. 9, 15 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Cornejo, M. Flores, M.E. Zayas, R. Lozada, R. Palomino, J.E. Espinoza, O. Portillo, J. Martinez, O. Zelaya, S.A. Tomas, A.B. Soto, J. Lumin. 128, 213 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Ruvalcaba-Cornejo et al., Opt. Mater. 33, 823 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Sun, Preparation and characterization of rare earth glasses. (Thesis, Brown University 1988)Google Scholar
  21. 21.
    S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A.R. Kortan, N. Kopylov, R.G. Ahrens, J. Non-Cryst. Solids 322, 311 (2003)CrossRefGoogle Scholar
  22. 22.
    D.R. Uhlmann, N.J. Kreidl, Glass: science and technology, vol. 1 (Academics Press, New York, 1983)Google Scholar
  23. 23.
    L.L. Neindre, S. Jiang, B.C. Hwan, T. Luo, J. Watson, N. Peyghambarian, J. Non-Cryst. Solids 255, 97 (1999)CrossRefGoogle Scholar
  24. 24.
    M.R. Sahar, K. Sulhadi, M.S. Rohani, J. Mater. Sci. 42, 824 (2007)CrossRefGoogle Scholar
  25. 25.
    A.A. Kaminiski, Laser Crystals, 2nd edn. (Springer, Berlin, 1990)CrossRefGoogle Scholar
  26. 26.
    G. Liu, B. Jacquier, Spectroscopic Properties of Rare earths in Optical Materials (Springer, Berlin, 2005)Google Scholar
  27. 27.
    V.K. Rai, Appl. Phys. B 88, 297 (2007)CrossRefGoogle Scholar
  28. 28.
    V.K. Rai, D.K. Mohanty, Appl. Phys. B 109, 599 (2012)CrossRefGoogle Scholar
  29. 29.
    S.H. Abdul Aziz, R. El-Mallawany, S.S. Badaron, H.M. Kamari, K.A. Matori, Adv. Mater. Sci. Eng. (2015). Google Scholar
  30. 30.
    N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Ceram. Int. 40, 14477–14481 (2014)CrossRefGoogle Scholar
  31. 31.
    E.S. Yousef, B. Al-Qaisi, Solid State Sci. 19, 6–11 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley, A. Newman, Pharm. Res. 23, 2333 (2006)CrossRefGoogle Scholar
  33. 33.
    H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, J. Non-Cryst. Solids 151, 134 (1992)CrossRefGoogle Scholar
  34. 34.
    U. Hoppe, E. Yousef, C. Rüssel, J. Neuefeind, A.C. Hannon, J. Phys.: Conden. Matter 16, 1645 (2004)Google Scholar
  35. 35.
    F. Ciorcas, S.K. Mendiratta, I. Ardelean, M.A. Valente, Eur. Phys. J. B 20, 235 (2001)Google Scholar
  36. 36.
    S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Opt. Mater. Express 2, 140 (2012)CrossRefGoogle Scholar
  37. 37.
    M.R. Sahar, K. Sulhadi, M.S. Rohani, J. Non-Cryst. Solids 354, 1179 (2007)CrossRefGoogle Scholar
  38. 38.
    D. Munoz-Martin, M.A. Villegas, J. Gonzalo, J.M. Fernandez-Navarro, J. Eur. Ceram. Soc. 29, 2903 (2009)CrossRefGoogle Scholar
  39. 39.
    S. Rada, E. Culea, M. Rada, P. Pascuta, J. Mater. Sci. 44, 3235 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Çelikbilek, A.E. Ersundu, S. Aydın, J. Am. Ceram. Soc. 96, 1470 (2013)CrossRefGoogle Scholar
  41. 41.
    S. Rada, M. Rada, E. Culea, Spectrochim. Acta, Part A 75, 846 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Rada, V. Dan, M. Rada, E. Culea, J. Non-Cryst. Solids 356, 474 (2010)CrossRefGoogle Scholar
  43. 43.
    Y. Pai, C. Chou, F. Shieu, Mater. Chem. Phys. 107, 524 (2008)CrossRefGoogle Scholar
  44. 44.
    H.S. Liu, T.S. Chin, S.W. Yung, Mater. Chem. Phys. 50, 1 (1997)CrossRefGoogle Scholar
  45. 45.
    G. Upender, S. Bharadwaj, A.M. Awasthi, V.C. Mouli, Mater. Chem. Phys. 118, 298 (2009)CrossRefGoogle Scholar
  46. 46.
    A. Kaur, A. Khanna, C. Pesquera, F. Gonzales, V. Sathe, J. Non-Cryst. Solids 356, 864 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Nukui, T. Taniguchi, M. Miyata, J. Non-Cryst. Solids 293–295, 255 (2001)CrossRefGoogle Scholar
  48. 48.
    A.O. Kodolbaş, Mater. Sci. Eng., B 98, 161 (2003)CrossRefGoogle Scholar
  49. 49.
    J. Singh, K. Shimakawa, Advances in Amorphous Semiconductors, 2nd edn. (Taylor and Francis, New York, 2003)CrossRefGoogle Scholar
  50. 50.
    G. Kılıç, U.G. İşsever, E. İlik, Mater. Res. Express 6, 065907 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and LettersEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations