Low-cost fabrication of BiOCOOH microflowers for high-performance supercapacitors applications

  • Yinxia Chen
  • Xianbing JiEmail author
  • S. VadivelEmail author
  • B. Saravanakumar


The synthesis of bismuth based materials with porous structures for supercapacitor application has drawn much attention due to their high specific surface area and easy access of electrolytes with the electrode surface through their hierarchical pores. In this present report, we synthesized a three dimensional (3D) BiOCOOH micro flowers by a solvothermal approach and applied to supercapacitor applications. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy results confirmed that the formation of porous BiOCOOH flowers. When BiOCOOH was used as electrode material for supercapacitors it exhibits a maximum specific capacitance value of 312 F g−1 at current density of 1 Ag−1. Additionally, the BiOCOOH flowers retained 52% of its initial specific capacity after 5000 charge–discharge cycles indicating an excellent cyclic stability. This improvement in the cycle stability of the BiOCOOH is ascribed to high surface area and enhanced ion transport through the pores of the BiOCOOH flowers. This high specific capacitance and excellent cyclic stability of the porous BiOCOOH flowers prove to be a promising candidate for supercapacitor application.



This work was funded by the Prominent Talent Project, Hebei University of Environmental Engineering (BJRC201701), the Project of Natural Science Foundation of Hebei Province (E2016415004, E2016415002), the Project of Science and Technology Department of Hebei Province (15213629, 15213620), and the scientific research Project item of Hebei province education office (QN2016032).


  1. 1.
    V. Aravindan, J. Gnanaraj, Y. Lee, S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014)CrossRefGoogle Scholar
  2. 2.
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Liu, S.C. Jun, Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. J. Power Sources 342, 629–637 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Zhang, J.Y. Zhou, W.J. Chen, Y.Y. Zhao, X.M. Mu, Z.X. Zhang, X.J. Pan, E.Q. Xie, Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: the case of NiCo2O4 @NiMoO4 hierarchical nanostructures. Chem. Eng. J. 307, 687–695 (2017)CrossRefGoogle Scholar
  6. 6.
    Z.P. Li, Y.J. Mi, X.H. Liu, S. Liu, S.R. Yang, J.Q. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 21, 14706–14711 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 4, 4484–4490 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, Y. Wang, Y. Xie, T. Cheng, W. Lai, H. Pang, W. Huang, Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6, 14354–14359 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Liu, S.C. Lee, U.M. Patil, C. Ray, K.V. Sankar, K. Zhang, A. Kundu, S. Kang, J.H. Park, S.C. Jun, Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J. Mater. Chem. A 5, 4543–4549 (2017)CrossRefGoogle Scholar
  10. 10.
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W.D. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni Foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Guishi, C. Lijun, Z. Bing, L. Yi, Novel Bi2O3 loaded sepiolite photocatalyst, preparation and characterization. Mater. Lett. 168, 143–145 (2016)CrossRefGoogle Scholar
  12. 12.
    P. Chen, Q.X. Zhang, Y.H. Su, L.Z. Shen, F.L. Wang, H.J. Liu, Y. Liu, Z.W. Cai, W.Y. Lv, G.G. Liu, Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: dechloridation, detoxicity, and a new superoxide radical model study. Chem. Eng. J. 332, 737–748 (2018)CrossRefGoogle Scholar
  13. 13.
    J.J. Xu, Y. Wang, M.D. Chen, F. Teng, A novel BiOCl/BiOCOOH heterojunction photocatalyst with significantly enhanced photocatalytic activity. Mater. Lett. 222, 176–179 (2018)CrossRefGoogle Scholar
  14. 14.
    S.J. Li, S.W. Hu, W. Jiang, K.B. Xu, One-pot solvothermal synthesis of Ag nanoparticles decorated BiOCOOH microflowers with enhanced visible light activity. Mater. Lett. 196, 343–346 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Yan, J. Bai, J. Wang, X. Zhang, B. Wang, Q. Liu, L. Liu, Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. Cryst. Eng. Comm. 15, 10007–10015 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Xiong, G. Cheng, Z. Lu, J.L. Tang, X.L. Yu, R. Chen, BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances. Cryst. Eng. Community 13, 2381–2390 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Chai, X. Wang, Enhanced visible light photocatalytic activity of BiOI/BiOCOOH composites synthesized via ion exchange strategy. RSC Adv. 5, 7589–7596 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.C. Zhang, H. Yang, W.P. Wang, H.M. Zhang, R.S. Li, X.X. Wang, R.C. Yu, A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. J. Alloy. Compd. 684, 707–713 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H.-M. Cheng, Q.-H. Yang, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Zheng, Y.C. Ge, H. Chu, R. Baines, P. Dong, J.H. Tang, Y. Yang, P.M. Ajayan, M.X. Ye, J.F. Shen, Controlled synthesis of Mo-doped Ni3S2 nano-rod: an efficient and stable electro-catalyst for water splitting. J. Mater. Chem. A 5, 1595–1602 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 7, 5941–5951 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Liu, C. Lu, X. Wang, R.Y. Tay, B.K. Tay, High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 9, 1528–1542 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Yu, X. Zhao, Y. Li, Q. Zhang, Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors. Appl. Surf. Sci. 393, 37–45 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Jing, Y. Xu, Z. Chen, M. He, M. Xie, J. Liu, H. Xu, S. Huang, H. Li, Different morphologies of SnS2 supported on 2D g-C3N4 for excellent and stable visible light photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 6, 5132–5141 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hebei University of Environmental EngineeringQinhuangdaoChina
  2. 2.Department of ChemistryPSG College of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsDr. Mahalingam College of Engineering and TechnologyPollachiIndia

Personalised recommendations