Advertisement

Solvothermal synthesis of ultra-fine silver nanowires with a diameter about 20 nm and an aspect ratio approximately 2000 for highly conductive flexible transparent film

  • Yuxiu Li
  • Ximin Yuan
  • Hongwei YangEmail author
  • Yunxiu Chao
  • Shuailong Guo
  • Chuan Wang
Article
  • 52 Downloads

Abstract

Flexible transparent conductive films (TCFs) based on silver nanowires (AgNWs) networks have been widely researched as an alternative to indium tin oxide (ITO) for optoelectronic devices. However, AgNW-based TCFs still involve issues such as high haze and poor transmittance for practical application. The innovation point of our work is the synthesis of ultra-fine and high aspect ratio AgNWs, and they are developed to prepare high-performance AgNW-based TCFs. In this study, a rapid and rationally designed method to synthesize ultra-fine AgNWs through dual ionic assistants assisted has been explored. As a result, the as-synthesized AgNWs have a uniform ~ 20 nm diameter, and a high aspect ratio of 2000, which are the minimum diameter and maximum aspect ratio among the values reported previously for solvothermal-processed AgNWs. A highly transparent and bendable AgNW-based conductive film shows a 97.71% transmittance and a haze of 1.49% under the condition of disregarding the transmittance and haze of bare PET substrate. The sheet resistance (Rsheet) of the resulting AgNW-based conductive film is ~ 15 Ω sq–1. Most importantly, the AgNW-based conductive film exhibits strong adhesion to the substrate. The advanced and wide-ranging features of the as-prepared AgNW-based conductive film greatly contribute to its use as a transparent conductive film in multifunctional flexible optoelectronic devices.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 21761016), Young and Middle-aged Academic and Technical Leaders Reserve Talents Program of Yunnan Province (Grant No. 2017HB060), Applied Basic Research Foundation of Yunnan Province (Grant Nos. 2016FD126, 2017FB142), Major R&D Project of Yunnan Province (Grant No. 2018ZE001), Research Foundation of Key New Products of Yunnan Province (Grant No. 2016BA007), and Research Foundation of Institute of Yunnan Province (Grant No. 2016DC033).

References

  1. 1.
    T. Mochizuki, Y. Takigami, T. Kondo, H. Okuzaki, Fabrication of flexible transparent electrodes using PEDOT:PSS and application to resistive touch screen panels. J. Appl. Polym. Sci. 135, 45972 (2018)CrossRefGoogle Scholar
  2. 2.
    S.W. Shin, Y.U. Jung, K.B. Kim, S.W. Choi, S.J. Kang, ITO-free transparent conductive films based on carbon nanomaterials with metal grid for liquid crystal displays. Liq. Cryst. 42, 1–5 (2015)CrossRefGoogle Scholar
  3. 3.
    L.X. Chen, M.H. Lee, Y.W. Wang, Y.S. Lau, A.A. Syed, F.R. Zhu, Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes. J. Mater. Chem. C 6, 2596–2603 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Liu, F.Z. Luo, A.X. Wei, Z. Liu, Y. Zhao, In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells. Mater. Lett. 141, 228–230 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Kumar, R.M. Kumar, D. Lahiri, I. Lahiri, Thermally reduced graphene oxide film on soda lime glass as transparent conducting electrode. Surf. Coat. Tech. 309, 931–937 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Preston, Z.Q. Fang, J. Murray, H.L. Zhu, J.Q. Dai, J.N. Munday, L.B. Hu, Silver nanowire transparent conducting paper-based electrode with high optical haze. J. Mater. Chem. C 2, 1248–1254 (2014)CrossRefGoogle Scholar
  7. 7.
    H.Y. Zhou, Y.L. Wang, J.W. Zhang, Z.K.N. Yu, Y.W. Li, L.C. Tan, Y.W. Chen, A facile approach towards chemical modification of Ag nanowires by PEDOT as a transparent electrode for organic solar cells. J. Mater. Chem. C 6, 312–319 (2018)CrossRefGoogle Scholar
  8. 8.
    J.B. Pyo, B.S. Kim, H. Park, T.A. Kim, C.M. Koo, J. Lee, J.G. Son, S.S. Lee, J.H. Park, Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale 7, 16434–16441 (2015)CrossRefGoogle Scholar
  9. 9.
    X.L. Chen, X.Z. Wu, S.S. Shao, J.Y. Zhuang, L.M. Xie, S.H. Nie, W.M. Su, Z. Chen, Z. Cui, Hybrid printing metal-mesh transparent conductive films with lower energy photonically sintered copper/tin ink. Sci. Rep. 7, 13239 (2017)CrossRefGoogle Scholar
  10. 10.
    H.G. Im, B.W. An, J. Jin, J. Jang, Y.G. Park, J.U. Park, B.S. Bae, A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Nanoscale 8, 3916–3922 (2016)CrossRefGoogle Scholar
  11. 11.
    J.H. Zhang, Z.F. Chen, X.X. Xu, W. Liao, L.Q. Yang, A simple and efficient approach to fabricate graphene/CNT hybrid transparent conductive films. RSC Adv. 7, 52555–52560 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Chamoli, M.K. Das, K.K. Kar, Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film. J. Phys. Chem. Solids 113, 17–25 (2018)CrossRefGoogle Scholar
  13. 13.
    B.P. Singh, S. Nayak, K.K. Nanda, A. Singh, C. Takai, S. Takashi, M. Fuji, Transparent, flexible, and conducting films based on graphene-polymer composites. Polym. Compos. 39, 297–304 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Devaraju, T. Lee, A.K. Mohanty, Y.K. Hong, K.H. Yoon, Y.S. Lee, J.H. Han, H.J. Paik, Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films. RSC Adv. 7, 19267–19272 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Ito, K. Masuko, B.A. Weintraub, L.C. Mckenzie, J.E. Hutchison, Convenient preparation of ITO nanoparticles inks for transparent conductive thin films. J. Nanopart. Res. 14, 149–158 (2012)CrossRefGoogle Scholar
  16. 16.
    Y.X. Ran, W.W. He, K. Wang, S.L. Ji, C.H. Ye, A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Commun. 50, 14877–14880 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Shahzadi, L. Wu, X.S. Ge, F.H. Zhao, H. Li, S.P. Pang, Y.J. Jiang, J. Guan, X.D. Mu, Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires. Carbohydr. Polym. 137, 732–738 (2016)CrossRefGoogle Scholar
  18. 18.
    C.Y. Chou, H.S. Liu, G.S. Liou, Highly transparent silver nanowire-polyimide electrode as a snow-cleaning device. RSC Adv. 6, 61386–61392 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Atwa, N. Maheshwari, I.A. Goldthorpe, Silver nanowire coated threads for electrically conductive textiles. J. Mater. Chem. C 3, 3908–3912 (2015)CrossRefGoogle Scholar
  20. 20.
    S.Y. Chen, Y.W. Guan, Y. Li, X.W. Yan, H.T. Ni, L. Li, A water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 5, 2404–2414 (2017)CrossRefGoogle Scholar
  21. 21.
    F. Fang, Y.Q. Li, G.W. Huang, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, Electrical anisotropy and multidimensional pressure sensor of aligned Fe3O4 @ sliver nanowire/polyaniline composite films under an extremely low magnetic field. RSC Adv. 7, 4260–4268 (2017)CrossRefGoogle Scholar
  22. 22.
    S.Q. Liu, B. Weng, Z.R. Tang, Y.J. Xu, Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale 7, 861–866 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Banica, D. Ursu, T. Nyari, A. Kellenberger, Two step polyol-solvothermal growth of think silver nanowires. Mater. Lett. 194, 181–184 (2017)CrossRefGoogle Scholar
  24. 24.
    Q.T. Tang, H.L. Shen, H.Y. Yao, Y. Jiang, C.F. Zheng, K. Gao, Preparation of silver nanowires/AZO composite film as a transparent conductive material. Ceram. Int. 43, 1106–1113 (2017)CrossRefGoogle Scholar
  25. 25.
    N.D. Zhang, X.S. Yin, H. Gong, Highly conductive and flexible transparent films based on silver nanowire/chitosan composite. RSC Adv. 6, 47552–47561 (2016)CrossRefGoogle Scholar
  26. 26.
    H.W. Du, T. Wan, B. Qu, F.Y. Cao, Q.R. Lin, N. Chen, X. Lin, D.W. Chu, Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces. 9, 20762–20770 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Zeng, T.S. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. J. Mater. Chem. A 3, 1410–1416 (2015)CrossRefGoogle Scholar
  28. 28.
    R.R. da Silva, M.X. Yang, S.-I. Choi, M.F. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y.N. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated Polyol method. ACS Nano 10, 7892–7900 (2016)CrossRefGoogle Scholar
  29. 29.
    B. Li, S.G. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 15, 6722–6726 (2015)CrossRefGoogle Scholar
  30. 30.
    W.P. Zhou, A.M. Hu, S. Bai, Y. Ma, D. Bridges, Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Adv. 5, 39103–39109 (2015)CrossRefGoogle Scholar
  31. 31.
    E.J. Lee, M.H. Chang, Y.S. Kim, J.Y. Kim, High-pressure polyol synthesis of ultrathin silver nanowires: electrical and optical properties. APL Mater. 1, 042118 (2013)CrossRefGoogle Scholar
  32. 32.
    T.T. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida, K. Shinozaki, Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 22, 23561–23567 (2012)CrossRefGoogle Scholar
  33. 33.
    Y.X. Jin, D.Y. Deng, Y.R. Cheng, L.Q. Kong, F. Xiao, Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 6, 4812–4818 (2014)CrossRefGoogle Scholar
  34. 34.
    J.P. Li, S.H. Qi, J. Li, M.Y. Zhang, Z.F. Wang, A highly thermostable and transparent lateral heat spreader based on silver nanowire/polyimide composite. RSC Adv. 5, 59398–59402 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Lian, D. Dong, D.X. Feng, G.F. He, Low roughness silver nanowire flexible transparent electrode by low temperature solution-processing for organic light emitting diodes. Org. Electron. 49, 9–18 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum MetalsKunming Institute of Precious MetalsKunmingPeople’s Republic of China

Personalised recommendations