Advertisement

Synthesis of multilayered micro flower NiCo2O4/GN/Fe3O4 composite for enhanced electromagnetic microwave (EM) absorption performance

  • Juan DingEmail author
  • Ligang Cheng
  • Xutong Zhang
  • Qiangfei Liu
Article
  • 12 Downloads

Abstract

A hierarchical micro flower structure NiCo2O4/GN/Fe3O4 composite was prepared with a two-step method. Then Fe3O4 nanoparticles were dressed up on petals of NiCo2O4/GN/Fe3O4 composite. It was successfully detected by instruments to analysis crystal texture, surface elements, micro morphology, magnetic properties and weight loss. Results showed that good synergistic effect of dielectric loss and magnetic loss of NiCo2O4/GN and Fe3O4 led to superior EM wave absorption. The minimum RL was − 38.18 dB at 10.6 GHz and effective absorption bandwidth < − 10 dB was reached 2.7 GHz (8.5–11.2 GHz) with the thickness 2.5 mm. The enhancement of EM wave absorption was attributed to the dielectric loss, magnetic loss, interfacial polarization, effective impedance matching and multiple scattering. Thus, the NiCo2O4/GN/Fe3O4 composite was a promising and developable material in EM wave absorption fields.

Notes

References

  1. 1.
    J. Luo, P. Shen, W. Yao et al., Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res. Lett. 11(1), 141–154 (2016)CrossRefGoogle Scholar
  2. 2.
    A.V. Nikitenko, A.S. Zubov, N.E. Shapkina, Rigorous coupled-wave analysis in calculating the electromagnetic scattering from a radio-absorbing material. Math. Models Comput. Simul. 7(2), 134–143 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Panwar, V. Agarwala, D. Singh, A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceram. Int. 41(2), 2923–2930 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Sep. Purif. Technol. 178, 138–146 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Assadi, V.S. Najafabadi, S.A.S. Shandiz et al., Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity. Oncotargets Therapy 9, 5531–5543 (2016)CrossRefGoogle Scholar
  6. 6.
    S.M. Ghoreishi, Facile synthesis and characterization of CaWO4 nanoparticles using a new Schiff base as capping agent: enhanced photocatalytic degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 28, 14833–14838 (2017)Google Scholar
  7. 7.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Nd2O3 nanostructures: simple synthesis, characterization and its photocatalytic degradation of methylene blue. J. Mol. Liq. 234, 430–436 (2017)CrossRefGoogle Scholar
  8. 8.
    M.D. Sobhan, Z.A. Sahar, S.N. Masoud, Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv. Powder Technol. 28, 747–754 (2017)CrossRefGoogle Scholar
  9. 9.
    Z.B. Yang, J. Ren, Z.T. Zhang et al., Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115(11), 5159 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Dosoudil, M. Usakova, J. Franek et al., Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites. IEEE Trans. Magn. 46(2), 436–439 (2010)CrossRefGoogle Scholar
  11. 11.
    M.F. Ali, S. Ray, Study of EM wave absorption and shielding characteristics for a bonsai tree for GSM-900 band. Prog. Electromagn. Res. C 49, 149–157 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Zhang, D. Zhang, EM-wave absorption properties of hollow spiral iron particles. J. Magn. Magn. Mater. 396, 169–171 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrason. Sonochem. 39, 452–460 (2017)CrossRefGoogle Scholar
  14. 14.
    S.A. Majid, M.D. Sobhan, S.N. Masoud et al., Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J. Mater. Sci.: Mater. Electron. 28, 6467–6474 (2017)Google Scholar
  15. 15.
    J. Yan, Y. Huang, C. Wei et al., Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials. Composites A 99, 121–128 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Chen, H. Zhang, G. Zeng et al., Controllable synthesis of unique Ni/mesoporous carbon composites with lightweight and high EM wave absorption performance. RSC Adv. 7(61), 38549–38556 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, D. Zhang, Y. Xu et al., Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added. J. Magn. Magn. Mater. 397, 255–259 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Zhou, Y. Huang, J. Yan et al., Fabrication of ternary CoNi@SiO2 @RGO composites with enhanced electromagnetic (EM) wave absorption performances. J. Mater. Sci.: Mater. Electron. 28(24), 1–10 (2017)Google Scholar
  19. 19.
    H. Safajou, H. Khojasteh, M. Salavati-Niasari et al., Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 498, 423–432 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Sun, J. He, G. Li et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1(4), 765–777 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Kong, X. Yin, Y. Zhang et al., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117(38), 19701–19711 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Kong, X. Yin, X. Yuan et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73(73), 185–193 (2014)CrossRefGoogle Scholar
  23. 23.
    D. Sun, Q. Zou, G. Qian et al., Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 61(15), 5829–5834 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Li, H. Yi, J. Zhang et al., Fe3O4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J. Nanopart. Res. 15(3), 1472–1483 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Han, X. Yin, L. Kong et al., Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403–16409 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Chen, J. Qiu, K. Zhu et al., Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci.: Mater. Electron. 25(9), 3664–3673 (2014)Google Scholar
  27. 27.
    B. Qu, C. Zhu, C. Li et al., Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8(6), 3730–3735 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, X. Yu, H. Hu et al., Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 1–9 (2015)Google Scholar
  29. 29.
    G.X. Li, T. Wang, H.R. Xue et al., Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties. Acta Aeronaut. Astronaut. Sin. 32(9), 1732–1739 (2011)Google Scholar
  30. 30.
    X. Li, S. Yang, J. Sun et al., Enhanced electromagnetic wave absorption performances of Co3O4, nanocube/reduced graphene oxide composite. Synth. Met. 194(194), 52–58 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Zhang, Y. Huang, P. Liu, Enhanced electromagnetic wave absorption properties of poly(3, 4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Han, X. Yin, W. Duan et al., Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695–2703 (2016)CrossRefGoogle Scholar
  33. 33.
    H.R. Chu, Q. Zeng, P. Chen et al., Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method. J. Alloys Compd. 719, 296–307 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Du, G. Zhou, H. Zhang et al., Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5(15), 7405–7409 (2013)CrossRefGoogle Scholar
  35. 35.
    H. Jiang, J. Ma, C. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem. Commun. 48(37), 4465 (2012)CrossRefGoogle Scholar
  36. 36.
    Y.J. Chen, B. Qu, L. Hu et al., High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate anosheet-nanowire cluster arrays as self-supported electrodes. Nanoscale 5(20), 9812 (2013)CrossRefGoogle Scholar
  37. 37.
    X.J. Zhang, G.S. Wang, W.Q. Cao et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)CrossRefGoogle Scholar
  38. 38.
    X. Li et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, Y.B. Chen, X.M. Wu et al., Fabrication of MoS2-graphene modified with Fe3O4 particles and its enhanced microwave absorption performance. Adv. Powder Technol. 29, 744–750 (2018)CrossRefGoogle Scholar
  40. 40.
    M. Zhou et al., Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes. Mater. Lett. 159, 498–501 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Wei et al., Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 314, 477–487 (2017)CrossRefGoogle Scholar
  42. 42.
    M.D. Sobhan, M.R. Naimi-Jamal, S.M. Ghoreishi, Synthesis, characterization, and atenolol delivery application of functionalized mesoporous hydroxyapatite nanoparticles prepared by microwave-assisted co-precipitation method. Curr. Drug Deliv. 13(7), 1123–1129 (2016)CrossRefGoogle Scholar
  43. 43.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017)CrossRefGoogle Scholar
  44. 44.
    M.D. Sobhan, Z.A. Sahar, S.N. Masoud, New facile preparation of Ho2O3 nanostructured material with improved photocatalytic performance. J. Mater. Sci.: Mater. Electron. 28, 1914–1924 (2017)Google Scholar
  45. 45.
    A. Manikandan, J. Judith Vijaya, L. John Kennedy, Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)CrossRefGoogle Scholar
  46. 46.
    M.D. Sobhan, S.N. Masoud, K. Hossein et al., Green synthesis of magnetic Fe3O4/SiO2/HAp nanocomposite for atenolol delivery and in vivo toxicity study. J. Clean. Prod. 168, 39–50 (2017)CrossRefGoogle Scholar
  47. 47.
    M.D. Sobhan, S.N. Masoud, O. Amiri et al., Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)CrossRefGoogle Scholar
  48. 48.
    D. Fatemeh, M. Ali, A. Alireza, Synthesis of Fe3O4@ZrO2 core–shell nanoparticles through new approach and its solar light photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 4871–4878 (2017)Google Scholar
  49. 49.
    N. Amin, H. Maryam, R.M. Mohammad et al., Synergistic effect of concurrent presence of zirconium oxide and iron oxide in the form of core-shell nanoparticles on the performance of Fe3O4@ZrO2/PAN nanocomposite membrane. Ceram. Int. 43, 17174–17185 (2017)CrossRefGoogle Scholar
  50. 50.
    R.R. Amir, H.E.K. Amir, D. Fatemeh et al., The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel auto combustion method. Int. J. Appl. Ceram. Technol. 15, 758–765 (2018)CrossRefGoogle Scholar
  51. 51.
    Jyoti Shah, Saood Ahmad, Rishu Chaujar et al., Role of magnetic exchange interaction due to magnetic anisotropy on inverse spin Hall voltage at FeSi3%/Pt thin film bilayer interface. J. Magn. Magn. Mater. 443, 159–164 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juan Ding
    • 1
    • 2
    Email author
  • Ligang Cheng
    • 3
  • Xutong Zhang
    • 1
    • 2
  • Qiangfei Liu
    • 1
    • 2
  1. 1.School of TextileZhongyuan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Textile and Garment IndustryZhengzhouPeople’s Republic of China
  3. 3.School of Material Science & EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations