Advertisement

Generation of oxygen interstitials with excess in situ Ga doping in chemical bath deposition process for the growth of p-type ZnO nanowires

  • Rajib Saha
  • Nayan Ranjan Saha
  • Anupam Karmakar
  • Goutam Kumar Dalapati
  • Sanatan ChattopadhyayEmail author
Article
  • 31 Downloads

Abstract

The current work focuses on the incorporation of excess amount of gallium (Ga) in zinc oxide (ZnO) nanowires to generate oxygen interstitials for developing p-type conductivity. Ga has been used as an n-type dopant in ZnO lattice by reducing its inherent vacancies up to 3% molar ratio of Ga and Zn employing chemical bath deposition technique. However, the addition of more than 4% of gallium nitrate in the bath solution creates oxygen interstitials which are confirmed from the presence of X-ray photoelectron spectroscopy (XPS) peak at 532.6 eV and the relevant cathodoluminescence (CL) peak at 626 nm of the grown Ga-doped ZnO nanowires. The p-type conductivity of such ZnO nanowires has been confirmed from current–voltage, capacitance–voltage and Hall voltage measurements. The reproducibility of the results indicates the incorporation of excess Ga to be a promising technique for growing p-type ZnO nanowires.

Notes

Acknowledgements

Mr. Rajib Saha likes to acknowledge the WBDITE (617-JS(IT)/P/08/2009) for providing the financial support to continue his research work. The authors would also like to acknowledge the DST PURSE program and Center of Excellence (COE), TEQIP Phase-II, World Bank (AC/TEQIP-II/CoE/13) for providing some infrastructural support to conduct this work. The authors are also grateful to Mr. Subhasis Das and Dr. Sunanda Dhar of Department of Electronic Science, University of Calcutta, for providing the Hall measurement facility. Authors are also thankful to Dr. Basudev Nag Chowdhury, Mr. Subhrajit Sikdar, Mr. Subhadip Chakraborty and Mr. Chirantan Das for their valuable help.

Supplementary material

10854_2019_1204_MOESM1_ESM.docx (300 kb)
Supplementary material 1 (DOCX 299 kb)

References

  1. 1.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, R829–R858 (2004)Google Scholar
  2. 2.
    R. Vittal, K.C. Ho, Zinc oxide based dye-sensitized solar cells: a review. J. Renew. Sustain. Energy 70, 920–935 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Bie, Z.M. Liao, H.Z. Zhang, G.R. Li, Y. Ye, Y.B. Zhou, J. Xu, Z.X. Qin, L. Dai, D.P. Yu, Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN Nanoscale p–n junctions. Adv. Mater. 23, 649–653 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Fujita, S. Yanase, H. Nishikori, Y. Hiragino, Y. Furubayashi, J. Lin, T. Yoshida, Near ultraviolet light emitting diodes using ZnMgO:N/ZnO hetero-junction grown by MOVPE. J. Cryst. Growth 464, 226–230 (2017)CrossRefGoogle Scholar
  5. 5.
    M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, H. Wang, p-Type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Appl. Phys. Lett. 101, 112101–112105 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Dhara, P.K. Giri, Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films 520, 5000–5006 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Das, R. Saha, S. Guhathakurata, S. Pal, N.R. Saha, H.S. Dutta, A. Karmakar, S. Chattopadhyay, Tuning of transport properties of the double-step chemical bath deposition grown zinc oxide (ZnO) nanowires by controlled annealing: an approach to generate p-type ZnO nanowires. Thin Solid Films 649, 129–135 (2018)CrossRefGoogle Scholar
  8. 8.
    C.B. Tay, S.J. Chua, K.P. Loh, Stable p-type doping of ZnO film in aqueous solution at low temperatures. J Phys Chem Lett. 114, 9981–9987 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Pradel, J. Uzuhashi, T. Takei, T. Ohkubo, K. Hono, N. Fukata, Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires. Nanotechnology 29, 335204 (2018)CrossRefGoogle Scholar
  10. 10.
    K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, S.J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett. 83, 63–65 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Joseph, H. Tabata, T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. 38, L1205–L1207 (1999)CrossRefGoogle Scholar
  12. 12.
    W.S. Noh, J.A. Lee, J.H. Lee, Y.W. Heo, J.J. Kim, Effect of oxygen pressure on the p-type conductivity of Ga, P co-doped ZnO thin film grown by pulsed laser deposition. Ceram. Int. 42, 4136–4142 (2016)CrossRefGoogle Scholar
  13. 13.
    S.B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205–075211 (2001)CrossRefGoogle Scholar
  14. 14.
    P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J. Phys. D 42, 1–6 (2008)Google Scholar
  15. 15.
    C.Y. Tsay, K.S. Fan, C.M. Lei, Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. J. Alloys Compd. 512, 216–222 (2012)CrossRefGoogle Scholar
  16. 16.
    K.E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G.C. Farlow, B.G. Svensson, A.Y. Kuznetsov, Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation. Phys. Rev. B 86, 1212031–1212035 (2012)CrossRefGoogle Scholar
  17. 17.
    Y.Y. Kim, B.H. Kong, H.K. Cho, Vertically arrayed Ga-doped ZnO nanorods grown by magnetron sputtering: the effect of Ga contents and microstructural evaluation. J. Cryst. Growth 330, 17–21 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Escobedo-Morales, U. Pal, Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping. Appl. Phys. Lett. 93(193120), 1–3 (2008)Google Scholar
  19. 19.
    H. Wan, H.E. Ruda, A study of the growth mechanism of CVD-grown ZnO nanowires. J. Mater. Sci. 21, 1014–1019 (2010)Google Scholar
  20. 20.
    S.Y. Li, C.Y. Lee, T.Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process. J. Cryst. Growth 247, 357–362 (2003)CrossRefGoogle Scholar
  21. 21.
    I. Isakov, M. Panfilova, M.J.L. Sourribes, P.A. Warburton, Growth of ZnO and ZnMgO nanowires by Au-catalysed molecular-beam epitaxy. Phys. Status Solidi C 10, 1308–1313 (2013)Google Scholar
  22. 22.
    W.-T. Chiou, W.-Y. Wu, J.-M. Ting, Growth of single crystal ZnO nanowires using sputter deposition. Diam. Relat. Mater. 12, 1841–1844 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Paul, A. Das, M. Palit, S. Bhunia, A. Karmakar, S. Chattopadhyay, Investigation of the properties of single-step and double-step grown ZnO nanowires using chemical bath deposition technique. Adv. Mater. Lett. 7, 610–615 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Das, A. Kushwaha, R.K. Sivasayan, S. Chakraborty, H.S. Dutta, A. Karmakar, S. Chattopadhyay, D. Chi, G.K. Dalapati, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes. J. Phys. D Appl. Phys. 49, 145105–145111 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 112, 680–685 (2008)CrossRefGoogle Scholar
  26. 26.
    K.M. McPeak, T.P. Le, N.G. Britton, Z.S. Nickolov, Y.A. Elabd, J.B. Baxter, Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth. Langmuir 27, 3672–3677 (2011)CrossRefGoogle Scholar
  27. 27.
    G.C. Park, S.M. Hwang, J.H. Lim, J. Joo, Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6, 1840–1847 (2014)CrossRefGoogle Scholar
  28. 28.
    K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, K. Byrappa, Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol–gel spin coating technique. J. Phys. D 50, 095105–095112 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, S.Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J Alloys Compd. 698, 555–564 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep. 4, 1–8 (2014)Google Scholar
  31. 31.
    P.S. Venkatesh, S. Balakumar, K. Jeganathan, Post-annealing effects on the structural and optical properties of vertically aligned undoped ZnO nanorods grown by radio frequency magnetron sputtering. RSC Adv. 4, 5030–5035 (2014)CrossRefGoogle Scholar
  32. 32.
    A.A. Rani, S. Ernest, Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for dye-sensitized solar cell application. Superlattices Microstruct. 75, 398–408 (2014)CrossRefGoogle Scholar
  33. 33.
    H.H. Lu, J.P. Xu, L. Liu, Interfacial and electrical properties of Ga as metal-oxide-semiconductor capacitor with ZrAlON as the interfacial passivation layer. Chin. Phys. Lett. 34, 047303–047306 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Dhara, K. Imakita, M. Mizuhata, M. Fujii, Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires. Nanotechnology 25, 225202–225211 (2014)CrossRefGoogle Scholar
  35. 35.
    U. Ilyas, R.S. Rawat, Y. Wang, T.L. Tan, P. Lee, R. Chen, H.D. Sun, F. Li, S. Zhang, Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Appl. Surf. Sci. 258, 6373–6378 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Hai-Bo, Y. Shao-Yan, Z. Pan-Feng, W. Hong-Yuan, L. Xiang-Lin, J. Chun-Mei, Z. Qin-Sheng, C. Yong-Hai, W. Zhan-Guo, Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy. Chin. Phys. Lett. 24, 2011–2108 (2007)CrossRefGoogle Scholar
  37. 37.
    S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7, 470–479 (2012)CrossRefGoogle Scholar
  38. 38.
    X. Wei, R. Zhao, M. Shao, X. Xu, J. Huang, Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate. Nanoscale Res. Lett. 8, 112–118 (2013)CrossRefGoogle Scholar
  39. 39.
    N.H. Alvi, K.U. Hassan, O. Nur, M. Willander, The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 6, 130–136 (2011)CrossRefGoogle Scholar
  40. 40.
    X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285–2287 (2001)CrossRefGoogle Scholar
  41. 41.
    X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141–3147 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Gao, X. Zhang, Y. Sun, Q. Zhao, D. Yu, Compensation mechanism in N-doped ZnO nanowires. Nanotechnology 21, 245703–245710 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of Polymer Science and TechnologyUniversity of CalcuttaKolkataIndia
  3. 3.Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations