Advertisement

Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods

  • Negar Chamankar
  • Ramin KhajaviEmail author
  • Ali Akbar Yousefi
  • Abou saeid Rashidi
  • Farhad Golestanifard
Article
  • 5 Downloads

Abstract

Two different kinds of Lead Zirconate Titanate (Pb (Zr0.52, Ti0.48) O3, PZT) particles (PZT-Ps) were synthesized from a precursor solution composed of Zirconium n-propoxide, Titanium isopropoxide and Lead 2-ethylhexanoate and polyvinyl pyrolidone polymer based on a sol–gel method. Prepared sol was either dried called PZT dried particles (PZT-D-Ps) after calcination and ball milling, or it was electrospun into nanofibers and it was named PZT nanofibers particles (PZT-Nf-Ps) again after calcination and ball milling. Perovskite phase formation in two kinds of PZT-Ps was investigated after calcination at various temperatures (550, 650 and 750 °C for 2 h) and finally they were ball milled to particles. Crystallography of PZT-Ps was investigated by Fourier Transform Inferred spectroscopy (FTIR) beside X-ray diffraction (XRD) technique, and their morphology was observed using the scanning electron microscope (SEM). Size distribution of synthesized PZT-Ps was determined by Dynamic light scattering (DLS) technique. Piezoelectric coefficient (d33) and dielectric constant (K) of PZT-Ps were measured and their other piezoelectric constants, such as piezoelectric voltage coefficient (g33) and figure of merit (FOM) were calculated. Finally, the pyroelectric properties of PZT-Ps were determined by changing their temperature suddenly from 0 to 100 °C. Results showed that the diameter of PZT-Ps through two methods i.e. PZT-D-Ps and PZT-Nf-Ps were about 532 nm and 230 nm respectively. After calcination at 550 °C, both crystalline phase i.e. perovskite and pyrochlore were present in all synthesized PZT-Ps simultaneously. With increasing the temperature to 650 °C then 750 °C, the pyrochlore phase was eliminated and the perovskite crystal phase was intensified gradually. Interestingly for PZT-Nf-Ps, the intensity of the perovskite phase was higher than PZT-D-Ps. Dielectric constants for PZT-Nf-Ps and PZT-D-Ps were about 2487 and 2011 respectively. Obtained piezoelectric coefficient and piezoelectric voltage coefficients of PZT-Nf-Ps (104 × 10−12 C/N, 0.4725 × 10−3 Vm/N) were achieved almost twice as much as PZT-D-Ps (48 × 10−12 C/N, 0.2699 × 10−3 Vm/N) and the pyroelectric coefficient of PZT-Nf-Ps (4.3 C m−2 k−1) was also higher than PZT-D-Ps (3.7 C m−2 k−1).

References

  1. 1.
    X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 188(2), 621–626 (2009)Google Scholar
  2. 2.
    L. Liang, X. Kang, Y. Sang, H. Liu, One dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3(7), 1500358 (2016)Google Scholar
  3. 3.
    S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18(3), 1856–1862 (2018)Google Scholar
  4. 4.
    Y. Zi et al., Triboelectric–pyroelectric–piezoelectric hybrid cell for high efficiency energy harvesting and self powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)Google Scholar
  5. 5.
    D. Bhatia, System design of frequency controlled triboelectric nanogenerators for environmental energy scavenging. Materials (2018).  https://doi.org/10.13140/RG.2.2.19837.26082 Google Scholar
  6. 6.
    L. Jin et al., Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 10(8), 7874–7881 (2016)Google Scholar
  7. 7.
    W. Yang et al., Harvesting energy from the natural vibration of human walking. ACS Nano 7(12), 11317–11324 (2013)Google Scholar
  8. 8.
    M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci. 28(21), 15942–15952 (2017)Google Scholar
  9. 9.
    X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10(6), 2133–2137 (2010)Google Scholar
  10. 10.
    R. Moalla, B. Vilquin, G. Saint-Girons, G. Sebald, N. Baboux, R. Bachelet, Dramatic effect of thermal expansion mismatch on the structural, dielectric, ferroelectric and pyroelectric properties of low-cost epitaxial PZT films on SrTiO 3 and Si. CrystEngComm 18(11), 1887–1891 (2016)Google Scholar
  11. 11.
    A. Cuadras, M. Gasulla, A. Ghisla, and V. Ferrari, “Energy harvesting from PZT pyroelectric cells,” in Instrumentation and Measurement Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE, 2006, pp. 1668-1672: IEEEGoogle Scholar
  12. 12.
    P.M. Rørvik, T. Grande, M.A. Einarsrud, One dimensional nanostructures of ferroelectric perovskites. Adv. Mater. 23(35), 4007–4034 (2011)Google Scholar
  13. 13.
    R. Moalla, G. Le Rhun, E. Defay, N. Baboux, G. Sebald, R. Bachelet, Pyroelectricity of Pb (Zr0. 52Ti0. 48) O3 films grown by sol–gel process on silicon. Thin Solid Films 601, 80–83 (2016)Google Scholar
  14. 14.
    Y. Wang, J.J. Santiago-Avilés, A review on synthesis and characterization of lead zirconate titanate nanofibers through electrospinning. Integr. Ferroelectr. 126(1), 60–76 (2011)Google Scholar
  15. 15.
    Y.J. Ko et al., Flexible Pb (Zr0. 52Ti0. 48) O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl. Mater. Interfaces. 8(10), 6504–6511 (2016)Google Scholar
  16. 16.
    Y.-I. Park, M. Nagai, M. Miyayama, T. Kudo, Effect of heating temperature on dielectric properties of Pb (Zr, Ti) O3 [PZT] fibers. J. Mater. Sci. 36(8), 1995–2000 (2001)Google Scholar
  17. 17.
    S. Choi, J. Park, J. Kang, S.W. Koh, Y.C. Kang, Synthesis and characterization of lead zirconate titanate nanofibers obtained by electrospinning. Bull. Korean Chem. Soc. 36(6), 1594–1598 (2015)Google Scholar
  18. 18.
    D.Y. Lee, J.-Y. Park, K.-H. Lee, J.-H. Kang, Y.-J. Oh, N.-I. Cho, Synthesis and characterization of Pb (Zr0. 5Ti0. 5) O3 nanofibers. Curr. Appl. Phys. 11(5), 1139–1143 (2011)Google Scholar
  19. 19.
    J.S. Yun et al., The effect of PVP contents on the fiber morphology and piezoelectric characteristics of PZT nanofibers prepared by electrospinning. Mater. Lett. 137, 178–181 (2014)Google Scholar
  20. 20.
    Q. Peng, W. Luo, C. Wu, X. Sun, P. Li, X. Chen, The fabrication and pyroelectric properties of single crystalline PZT nanorod synthesized by hydrothermal reaction. J. Mater. Sci. 25(4), 1627–1632 (2014)Google Scholar
  21. 21.
    R. Khajavi, M. Abbasipour, Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci. Iran. 19(6), 2029–2034 (2012)Google Scholar
  22. 22.
    R. Khajavi, M. Abbasipour, A. Bahador, Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J. Appl. Polym. Sci. (2016).  https://doi.org/10.1002/app.42883 Google Scholar
  23. 23.
    H. Rajabinejad, R. Khajavi, A. Rashidi, N. Mansouri, M. Yazdanshenas, Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int. J. Environ. Res 3(4), 663–670 (2009)Google Scholar
  24. 24.
    V. Elayappan, V. Murugadoss, S. Angaiah, Z. Fei, P.J. Dyson, Development of a conjugated polyaniline incorporated electrospun poly (vinylidene fluoride co-hexafluoropropylene) composite membrane electrolyte for high performance dye-sensitized solar cells. J. Appl. Polym. Sci. (2015).  https://doi.org/10.1002/app.42777 Google Scholar
  25. 25.
    P. Panneerselvam, V. Murugadoss, V. Elayappan, N. Lu, Z. Guo, S. Angaiah, ES energy & environment. Analysis 2, 2 (2018)Google Scholar
  26. 26.
    A.S. Priya, A. Subramania, Y.-S. Jung, K.-J. Kim, High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte. Langmuir 24(17), 9816–9819 (2008)Google Scholar
  27. 27.
    N. Singh, V. Murugadoss, S. Nemala, S. Mallick, S. Angaiah, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)Google Scholar
  28. 28.
    A.K. Solarajan, V. Murugadoss, S. Angaiah, Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl. Mater. Today 5, 33–40 (2016)Google Scholar
  29. 29.
    A.K. Solarajan, V. Murugadoss, S. Angaiah, Dimensional stability and electrochemical behaviour of ZrO 2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci. Rep. 7, 45390 (2017)Google Scholar
  30. 30.
    E. Vijayakumar, A. Subramania, Z. Fei, P.J. Dyson, High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. Rsc Adv. 5(64), 52026–52032 (2015)Google Scholar
  31. 31.
    A.K. Solarajan, V. Murugadoss, S. Angaiah, High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J. Appl. Polym. Sci. 134(32), 45177 (2017)Google Scholar
  32. 32.
    Y. Wang, R. Furlan, I. Ramos, J.J. Santiago-Aviles, Synthesis and characterization of micro/nanoscopic Pb (Zr0. 52Ti0. 48) O3 fibers by electrospinning. Appl. Phys. A 78(7), 1043–1047 (2004)Google Scholar
  33. 33.
    M. Khajelakzay, E. Taheri-Nassaj, Synthesis and characterization of PB (ZR0. 52, TI0. 48) O3 nanofibers by electrospinning, and dielectric properties of PZT-Resin composite. Mater. Lett. 75, 61–64 (2012)Google Scholar
  34. 34.
    J. Wang et al., Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning. J. Alloy. Compd. 579, 617–621 (2013)Google Scholar
  35. 35.
    X. Chen, S. Guo, and Y. Shi, “Acoustic emission transducer based on PZT nanofibers,” in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1301–1304: IEEEGoogle Scholar
  36. 36.
    C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er 0.1 Ti 1–x Co 4x/3 O 3 (0 ≤ x ≤ 0.1). RSC Advances 8(31), 17139–17150 (2018)Google Scholar
  37. 37.
    R. Pramanik, M. Sahukar, Y. Mohan, B. Praveenkumar, S. Sangawar, A. Arockiarajan, Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Ceram. Int. 45(5), 5731–5742 (2019)Google Scholar
  38. 38.
    T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn. J. Appl. Phys. 46(2L), L97 (2007)Google Scholar
  39. 39.
    T. Hoshina, S. Hatta, H. Takeda, T. Tsurumi, Grain size effect on piezoelectric properties of BaTiO3 ceramics. Jpn. J. Appl. Phys. 57(9), 90 (2018)Google Scholar
  40. 40.
    P. Zheng, J. Zhang, Y. Tan, C. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 60(13–14), 5022–5030 (2012)Google Scholar
  41. 41.
    T.M. Kamel, G. de With, Grain size effect on the poling of soft Pb (Zr, Ti) O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 28(4), 851–861 (2008)Google Scholar
  42. 42.
    Y. Wang, J.J. Santiago-Avilés, Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology 15(1), 32 (2003)Google Scholar
  43. 43.
    S. Xu, Y. Shi, S.-G. Kim, Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17(17), 4497 (2006)Google Scholar
  44. 44.
    E. Mensur Alkoy, C. Dagdeviren, M. Papila, Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3–3 PZT/polymer composite. J. Am. Ceram. Soc. 92(11), 2566–2570 (2009)Google Scholar
  45. 45.
    M. Khajelakzay, E. Taheri-Nassaj, Fabrication and dielectric properties of Pb (Zr 0.52 Ti 0.48) O 3 nanofibers-cement composites. Electron. Mater. Lett. 10(1), 117–120 (2014)Google Scholar
  46. 46.
    A. Mirzaei, M. Bonyani, S. Torkian, Synthesis and characterization of nanocrystalline PZT powders: from sol to dense ceramics. Process. Appl. Ceram. 10(1), 9–16 (2016)Google Scholar
  47. 47.
    J. Chang et al., Large d 33 and enhanced ferroelectric/dielectric properties of poly (vinylidene fluoride)-based composites filled with Pb (Zr 0.52 Ti 0.48) O 3 nanofibers. RSC Adv. 5(63), 51302–51307 (2015)Google Scholar
  48. 48.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)Google Scholar
  49. 49.
    T. Jordan, Z. Ounaies, Piezoelectric ceramics characterization (Institute For Computer Applications In Science And Engineering, Hampton, 2001)Google Scholar
  50. 50.
    M. Said, T. Velayutham, W.A. Majid, Dielectric, pyroelectric, and ferroelectric properties of gadolinium doped Sr0. 53Ba0. 47Nb2O6 ceramic. Ceram. Int. 43(13), 9783–9789 (2017)Google Scholar
  51. 51.
    C. Dias, M. Simon, R. Quad, D. Das-Gupta, Measurement of the pyroelectric coefficient in composites using a temperature-modulated excitation. J. Phys. D 26(1), 106 (1993)Google Scholar
  52. 52.
    S. Jachalke et al., How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4(2), 021303 (2017)Google Scholar
  53. 53.
    M. Adachi, T. Matsuzaki, T. Yamada, T. Shiosaki, A. Kawabata, Sputter-deposition of [111]-axis oriented rhombohedral PZT films and their dielectric, ferroelectric and pyroelectric properties. Jpn. J. Appl. Phys. 26(4R), 550 (1987)Google Scholar
  54. 54.
    N. Dharmaraj, C. Kim, H. Kim, Pb (Zr0. 5, Ti0. 5) O3 nanofibres by electrospinning. Mater. Lett. 59(24–25), 3085–3089 (2005)Google Scholar
  55. 55.
    I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J. Mater. Process. Technol. 167(2–3), 283–293 (2005)Google Scholar
  56. 56.
    T. Mandal, S. Ram, Synthesis of PbZr0. 7Ti0. 3O3 nanoparticles in a new tetragonal crystal structure with a polymer precursor. Mater. Lett. 57(16–17), 2432–2442 (2003)Google Scholar
  57. 57.
    R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, Nanostructured ceramics by electrospinning. J. Appl. Phys. 102(11), 7 (2007)Google Scholar
  58. 58.
    Z. Zheng, L. Gan, T. Zhai, Electrospun nanowire arrays for electronics and optoelectronics. Sci. China Mater. 59(3), 200–216 (2016)Google Scholar
  59. 59.
    S. Sharma, Ferroelectric nanofibers: principle, processing and applications. Adv. Mater. Lett 4, 522–533 (2013)Google Scholar
  60. 60.
    A. Chandran, K. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16(3), 2238 (2014)Google Scholar
  61. 61.
    U. Selvaraj, A. Prasadarao, S. Komarneni, K. Brooks, S. Kurtz, Sol-gel processing of PbTiO 3 and Pb (Zr 0.52 Ti 0.48) O 3 fibers. J. Mater. Res. 7(4), 992–996 (1992)Google Scholar
  62. 62.
    Y.I. Park, M. Miyayama, Electrical properties of Pb (Zr0. 53Ti0. 47) O3 [PZT] fibers fabricated by sol-gel technique. Key Eng. Mater. 157, 33–40 (1999)Google Scholar
  63. 63.
    P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, An approach for correlating the structural and electrical properties of Zr4+-modified SrBi 4 Ti 4 O 15/SBT ceramic. RSC Adv. 7(27), 16319–16331 (2017)Google Scholar
  64. 64.
    P.R. Das, L. Biswal, B. Behera, R. Choudhary, Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X = Nb, Ta) ferroelectric ceramics. Mater. Res. Bull. 44(6), 1214–1218 (2009)Google Scholar
  65. 65.
    A. Wu, P.M. Vilarinho, I.M.M. Salvado, J.L. Baptista, Sol–gel preparation of lead zirconate titanate powders and ceramics: effect of alkoxide stabilizers and lead precursors. J. Am. Ceram. Soc. 83(6), 1379–1385 (2000)Google Scholar
  66. 66.
    G.-T. Park, J.-J. Choi, J. Ryu, H. Fan, H.-E. Kim, Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 80(24), 4606–4608 (2002)Google Scholar
  67. 67.
    Z. Huang, Q. Zhang, S. Corkovic, R. Dorey, R.W. Whatmore, Comparative measurements of piezoelectric coefficient of PZT films by berlincourt, interferometer, and vibrometer methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(12), 2287–2293 (2006)Google Scholar
  68. 68.
    H.D. Chen, K. Udayakumar, C.J. Gaskey, L.E. Cross, J.J. Bernstein, L.C. Niles, Fabrication and electrical properties of lead zirconate titanate thick films. J. Am. Ceram. Soc. 79(8), 2189–2192 (1996)Google Scholar
  69. 69.
    A. Banerjee, S. Bose, Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification. Chem. Mater. 16(26), 5610–5615 (2004)Google Scholar
  70. 70.
    J. Akedo, M. Lebedev, Piezoelectric properties and poling effect of Pb (Zr, Ti) O 3 thick films prepared for microactuators by aerosol deposition. Appl. Phys. Lett. 77(11), 1710–1712 (2000)Google Scholar
  71. 71.
    M. Fan et al., Fabrication and piezoresponse of electrospun ultra-fine Pb (Zr0. 3, Ti0. 7) O3 nanofibers. Microelectron. Eng. 98, 371–373 (2012)Google Scholar
  72. 72.
    I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, U. Gösele, Intrinsic ferroelectric properties of strained tetragonal PbZr0. 2Ti0. 8O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv. Mater. 18(13), 1657–1661 (2006)Google Scholar
  73. 73.
    R.W. Whatmore, R. Watton, Pyroelectric materials and devices, in Infrared detectors and emitters: materials and devices, ed. by P. Capper, C.T. Elliot (Springer, Berlin, 2001), pp. 99–147Google Scholar
  74. 74.
    N. Shorrocks, A. Patel, M. Walker, A. Parsons, Integrated thin film PZT pyroelectric detector arrays. Microelectron. Eng. 29(1–4), 59–66 (1995)Google Scholar
  75. 75.
    M. Algueró, M. Calzada, L. Pardo, Pyroelectric properties of sol-gel processed lanthanum modified lead titanate ferroelectric thin films. Le Journal de Physique IV 8, P9–155 (1998)Google Scholar
  76. 76.
    R. Köhler, P. Padmini, G. Gerlach, G. Hofmann, R. Bruchhaus, Pyroelectric IR-detector arrays based on sputtered PZT and spin-coated P (VDF/TrFE) thin films. Integr. Ferroelectr. 22(1–4), 383–392 (1998)Google Scholar
  77. 77.
    Q. Zhang, R. Whatmore, Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D 34(15), 2296 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Textile EngineeringIslamic Azad University, Science and Research BranchTehranIran
  2. 2.Department of Polymer and Textile EngineeringIslamic Azad University South Tehran BranchTehranIran
  3. 3.Plastic Department, Process Research InstituteIran Polymer and Petrochemical Research InstituteTehranIran
  4. 4.Department of Materials Science and MetallurgyIran University of Science and TechnologyTehranIran

Personalised recommendations