Enhanced electrical properties in donor–acceptor co-doped Ba(Ti0.92Sn0.08)O3 ceramics

  • Ziwei Jin
  • Qingning LiEmail author
  • Si Zhong
  • Jiwen Xu
  • Changrong ZhouEmail author
  • Guohua Chen
  • Changlai Yuan
  • Guanghui Rao


In this work, lead-free piezoelectric ceramics Ba0.99Li0.005Al0.005(Ti0.92Sn0.08)O3-0.5%MnO2(BLATS-M) and Ba0.99Li0.005Nb0.005(Ti0.92Sn0.08)O3-0.5%MnO2(BLNTS-M) were synthesized by a solid-state reaction process. The influence of Li+–Al3+, Li+–Nb5+ ionic pairs on the microstructure, phase structure and electrical properties of Ba(Ti0.92Sn0.08)O3-0.5%MnO2(BTS-M) was systematically investigated. An orthorhombic (O) phase structure is obtained in all ceramics at room temperature. Both Li+–Al3+ and Li+–Nb5+ ionic pairs co-doping can enhance the piezoelectricity of BTS-M ceramic, while the Li+–Nb5+ doped BLNTS-M ceramic exhibits an optimum electrical properties: the piezoelectricity coefficient (d33) = 805 pC/N, the electromechanical coupling coefficient (kp) = 0.519, the relative permititivity (εr) = 31900, the converse piezoelectric coefficient \(\left( {d_{{33}}^{*}} \right)\) = 536 pm/V and the in situ quasi-static d33 with maximum \(\left( {d_{{33}}^{{\hbox{max} }}} \right)\) = 1620 pC/N. The dielectric properties versus DC bias electric field experiments exhibit high dielectric tunability (ƞr = 97.78%) and figure of merit (FOM = 20.96) at 100 Hz and room temperature in BLNTS-M ceramic. The results suggest an effective approach to design high-performance piezoelectrics and dielectrics by appropriately selecting the types of donor–acceptor ionic pairs.



This work was supported by the National Nature Science Foundation of China (Grant Nos. 11564007, 61741105, 51862004 and 11664006) and the Natural Science Foundation of Guangxi (Grant Nos. 2017GXNSFDA198024, 2017GXNSFAA198339).


  1. 1.
    Z.H. Chen, Z.W. Li, J.N. Ding, J.H. Qiu, Y. Yang, J. Alloy. Compd. 704, 193–196 (2017)CrossRefGoogle Scholar
  2. 2.
    J.G. Wu, D.Q. Xiao, B. Wu, J.G. Zhu, Z.C. Yang, J. Wang, Mater. Res. Bull. 47, 1281–1284 (2012)CrossRefGoogle Scholar
  3. 3.
    W.G. Yang, B.P. Zhang, N. Ma, L. Zhao, J. Eur. Ceram. Soc. 37, 1411–1419 (2017)CrossRefGoogle Scholar
  4. 4.
    J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, J.C. Yang, J. Wang, J. Eur. Ceram. Soc. 32, 891–898 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Zhao, B.P. Zhang, N. Wang, J.Y. Chen, J. Eur. Ceram. Soc. 37, 1411–1419 (2017)CrossRefGoogle Scholar
  6. 6.
    W.F. Bai, D.Q. Chen, P. Li, B. Shen, J.W. Zhai, Z.G. Ji, J. Ceram. Int. 42, 3429–3436 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Sun, Y.F. Chang, J. Wu, X.H. Wang, S.T. Zhang, R.X. Wang, B. Yang, X.X. Cao, Mater. Lett. 177, 128–131 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Zhao, B.P. Zhang, P.F. Zhou, L.F. Zhou, L.F. Zhu, J.F. Li, J. Eur. Ceram. Soc. 35, 533–540 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Wang, B.P. Zhang, J. Ma, J. Zhao, J. Pei, J. Ceram. Int. 43, 641–649 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Xu, W.L. Li, L.D. Wang, W. Wang, W.P. Cao, W.D. Fei, Acta Mater. 79, 84–92 (2014)CrossRefGoogle Scholar
  11. 11.
    P.F. Zhou, B.P. Zhang, L. Zhao, L.F. Zhu, J Ceram. Int. 41, 4035–4041 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Wang, J.G. Wu, J. Alloy. Compd. 615, 969–974 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Tian, L.L. Wei, X.L. Chao, Z.H. Liu, Z.P. Yang, J. Am. Ceram. Soc. 96, 496–502 (2013)Google Scholar
  14. 14.
    Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, ACS Appl. Mater. Interfaces 8, 9231–9241 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Feng, W.L. Li, D. Xu, W.P. Cao, Y. Yu, W.D. Fei, RSC Adv. 6, 36118–36124 (2016)CrossRefGoogle Scholar
  16. 16.
    R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, RSC Adv. 6, 96953–96964 (2015)CrossRefGoogle Scholar
  17. 17.
    L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, P.F. Zhou, J.F. Li, J. Am. Ceram. Soc. 96, 241–245 (2013)CrossRefGoogle Scholar
  18. 18.
    B. Wu, J. Ma, W.J. Wu, M. Chen, J. Mater. Sci. Mater. Electron. 28, 2358–2365 (2017)CrossRefGoogle Scholar
  19. 19.
    L.F. Zhu, B.P. Zhang, L. Zhao, S. Li, Y. Zhou, X.C. Shi, N. Wang, J. Eur. Ceram. Soc. 36, 1017–1024 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Hamza, F. Benabdallah, I. Kallel, L. Seveyrat. L. Lebrun, H. Khemakem, J. Eur. Ceram. Soc. 735, 2523–2531 (2018)Google Scholar
  21. 21.
    E.P. Cai, Q.B. Liu, F.F. Zeng, Y.Y. Wang, A. Xue, J. Ceram. Int. 44, 788–798 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Sutapun, W. Vittayakorn, R. Muanghlua, N. Vittayakorn, Mater. Des. 86, 564–574 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Mayamae, W. Vittayakorn, U. Sukkha, T. Bongkarn, R. Muanghlua, N. Vittayakorn, J. Ceram. Int. 43, S121–S128 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.L. Huang, C.L. Zhao, X. Lv, H. Wang, J.G. Wu, J. Ceram. Int. 43, 13516–13523 (2017)CrossRefGoogle Scholar
  25. 25.
    M.L. Chen, Z.J. Xu, R.Q. Chu, Z. Wang, S.S. Gao, G.H.L.W. Yu, S.W. Gong, G.R. Li, Mater. Res. Bull. 59, 305–310 (2014)CrossRefGoogle Scholar
  26. 26.
    Z.G. Yao, Q. luo, C.B. Xu, L. Zhang, H. Hao, Z.Y. Yu, M.H. Cao, H.X. Liu, J. Alloy. Compd. 712, 406–411 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Tian, X.L. Chao, L. Wei, P.F. Liang, Z.P. Yang, J. Appl. Phys. 113, 184107 (2013)CrossRefGoogle Scholar
  28. 28.
    W.F. Bai, D.Q. Chen, J.J. Zhang, J.S. Zhng, M.Y. Ding, B. Shen, J.W. Zhai, Z.G. Ji, J. Ceram. Int. 42, 3598–3608 (2016)CrossRefGoogle Scholar
  29. 29.
    W. Jo, R. Dittmer, M. Acosta, J.D. Zang, C. Groh, E. Sapper, K. Wang, J. Roedel, J. Electroceram. 29, 71–93 (2013)CrossRefGoogle Scholar
  30. 30.
    P. Jaiban, A. Watcharapasorn, R. Yimnirun, R.W. Guo, A.S. Bhalla, J. Alloy. Compd. 695, 1329–1335 (2017)CrossRefGoogle Scholar
  31. 31.
    L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, J. Mater. Chem. C 2, 4764–4771 (2017)CrossRefGoogle Scholar
  32. 32.
    P.Q. Long, X.T. Liu, X. Long, Z.G. Yi, J. Alloy. Compd. 706, 234–243 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Zhao, J. Du, Z.J. Xu, Mater. Sci. Eng. B 224, 110–116 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ziwei Jin
    • 1
    • 2
  • Qingning Li
    • 1
    • 2
    Email author
  • Si Zhong
    • 2
  • Jiwen Xu
    • 1
    • 2
  • Changrong Zhou
    • 1
    • 2
    Email author
  • Guohua Chen
    • 1
    • 2
  • Changlai Yuan
    • 1
    • 2
  • Guanghui Rao
    • 1
    • 2
  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations