Advertisement

Influence of metal assisted chemical etching time period on mesoporous structure in as-cut upgraded metallurgical grade silicon for solar cell application

  • Ragavendran Venkatesan
  • Jeyanthinath MayandiEmail author
  • Joshua M. Pearce
  • Vishnukanthan Venkatachalapathy
Article
  • 34 Downloads

Abstract

In this work, upgraded metallurgical grade silicon (UMG-Si) wafer was used to fabricate mesoporous nanostructures, as an effective antireflection layer for solar photovoltaic cells. The length of the vertical Si nanostructure (SiNS) arrays was altered by varying the etching time period during metal assisted chemical etching process, using a silver catalyst. The optical, structural, morphological changes and the antireflection properties of Si nanostructures formed on UMG-Siwafer were analysed. SEM and photoluminescence studies indicate that Si nanocrystals are formed on the surface and along the vertical nanowires. The pore size depends on the Ag nanoparticle size distribution. All the samples demonstrated a luminescence band centred around 2.2 eV. From the optical results, samples etched for 45 min show strong absorption in the visible spectrum. The minimum and maximum surface reflectance in the visible region was observed for 15 min and 60 min etched SiNS. Based on the observed results, 15 min etched Si with a uniform porous structure has minimum reflectance across the entire silicon UV–Vis absorption spectrum, making it worth further investigation as a candidate for use as an antireflection layer in silicon based solar cells.

Notes

Acknowledgements

The authors are thankful to the support from DST-SERB/F/1829/2012–2013, and DST—PURSE programme MK University, for providing the Raman and SEM facilities. JM thanks Dr. K. Smagul for providing Si wafers. Author VV acknowledges P2V (Grant No. 255082) project funded by the Research council of Norway (NFR).

References

  1. 1.
    K.Q. Peng, X. Wang, L. Li, Y. Hu, S.T. Lee, Nano Today 8, 75–97 (2013)CrossRefGoogle Scholar
  2. 2.
    K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Adv. Funct. Mater. 16, 387–394 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Kajari-Schröder, J. Käsewieter, J. Hensen, R. Brendel, Energy Procedia 38, 919–925 (2013)CrossRefGoogle Scholar
  4. 4.
    H. Han, Z. Huang, W. Lee, Nano Today 9, 271–304 (2014)CrossRefGoogle Scholar
  5. 5.
    Z.P. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285–308 (2011)CrossRefGoogle Scholar
  6. 6.
    D.M. Bagnall, M. Boreland, Energy Policy 36, 4390–4396 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Ming-Wang, Y. Hui, Z. Ming-Liang, W. Ning-Bew, S. Yue-Yue, L. Shuit-Tong, Appl. Phys. Lett. 87 183106 (2005)CrossRefGoogle Scholar
  8. 8.
    J.-K. Kim, T. Gessmann, E.F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, Y. Park, Appl. Phys. Lett. 88, 013501 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Kikuta, H. Toyota, W. Yu, Opt. Rev. 10, 63–73 (2003)CrossRefGoogle Scholar
  10. 10.
    R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, J. Spatz, Laser Photon. Rev. 6, 641–659 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.-M. Song, H.-J. Choi, J.-S. Yu, Y.-T. Lee, Opt. Express 18, 13063–13071 (2010)CrossRefGoogle Scholar
  12. 12.
    S.H. Zhong, Z.G. Huang, X.X. Lin, Y. Zeng, Y.C. Ma, W.Z. Shen. Adv. Mater. 27, 555–561 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Zhang, J. Gao, L.J. Fu, L.C. Yang, Y.P. Wu, H.Q. Wu, J. Mater. Chem. 17, 1321 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Hoffmann, J. Bauer, C. Ronning, Th Stelzner, J. Michler, C. Ballif, V. Sivakov, S.H. Christiansen, Nano Lett. 9, 1341–1344 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Oh, Y. Hao-Chih, H.M. Branz, Nat. Nanotechnol. 7, 743–748 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Nat. Nanotechnol. 10, 624–628 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Modanese, H.S. Laine, T.P. Pasanen, H. Savin, J.M. Pearce, Energies 11(9), 2337 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Chena, J. Zha, F. Hu, X. Ye, S. Zou, V. Vähänissi, J.M. Pearce, H. Savin, X. Su, Sol. Energy Mater. Sol. Cells 191, 1–8 (2019)CrossRefGoogle Scholar
  19. 19.
    H.-D. Um, N. Kim, K. Lee, I. Hwang, J.H. Seo, Y.J. Yu, P. Duane, M. Wober, K. Seo, Sci. Rep. 5, 11277 (2015)CrossRefGoogle Scholar
  20. 20.
    V.T. Pham, M. Dutta, H.T. Bui, N. Fukata, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 045014 (2014)Google Scholar
  21. 21.
    G. Dong, Y. Zhou, H. Zhang, F. Liu, G. Li, M. Zhu, RSC Adv. 7, 45101–45106 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Safarian, G. Tranell, M. Tangstad, Energy Procedia 20, 88–97 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Preis, F. Buchholz, P. Diaz-Perez, J.G.-R.C. Peter, S. Schmitt, J. Theobald, K. Peter, A.-K. Søiland, Energy Procedia 55, 589–595 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Thorstensen, J. Gjessing, E.S. Marstein, S.E. Foss, IEEE J. Photovolt. 3, 709–715 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Venkatesan, M. Arivalagan, V. Venkatachalapathy, J.M. Pearce, J. Mayandi, Mater. Lett. 221, 206–210 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Li, Y. Xiao, J.H. Bang, D. Lausch, S. Meyer, M. Paul-Tiberiu, J. Jin-Young, S.L. Schweizer, J.H. Le, R.B. Wehrspohn, Adv. Mater. 25, 3187–3191 (2013)CrossRefGoogle Scholar
  27. 27.
    G.-R. Lin, Y.-H. Lin, Y.-H. Pai, F.-S. Meng, Opt. Express 19, 597 (2011)CrossRefGoogle Scholar
  28. 28.
    K.A. Salman, K. Omar, Z. Hassan, Superlattices Microstruct. 50, 647–658 (2011)CrossRefGoogle Scholar
  29. 29.
    N. Naderi, M.R. Hashim, Appl. Surf. Sci. 258, 6436–6440 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Sangeetha, V. Sasirekha, V. Ragavendran, J. Mayandi, J. Pearce, J.H. Selj, V. Ramakrishnan, Z. Phys. Chem. 231, 9, 1585–1598 (2016)Google Scholar
  31. 31.
    R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703 (2014)CrossRefGoogle Scholar
  32. 32.
    L.T. Canham, Phys. Status Solidi 190, 9 (1995)CrossRefGoogle Scholar
  33. 33.
    C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 48, 11024–11036 (1993)CrossRefGoogle Scholar
  34. 34.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197–200 (1999)CrossRefGoogle Scholar
  35. 35.
    Q. Yu, H. He, L. Gana, Z. Ye, RSC Adv. 5, 80526–80529 (2015)CrossRefGoogle Scholar
  36. 36.
    W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz, Nat. Nanotechnology 5, 878–884 (2010)CrossRefGoogle Scholar
  37. 37.
    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  38. 38.
    E. Rauwel, A. Galeckas, P. Rauwel, H. Fjellvåg, Adv. Funct. Mater. 22, 1174–1179 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Electronics and Nano engineering, School of Electrical EngineeringAalto UniversityEspooFinland
  3. 3.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  4. 4.Department of Electrical and Computer EngineeringMichigan Technological UniversityHoughtonUSA
  5. 5.Department of Physics, Centre for Materials Science and NanotechnologyUniversity of OsloOsloNorway
  6. 6.Department of Materials ScienceNational Research Nuclear University “MEPhI”MoscowRussian Federation

Personalised recommendations