Advertisement

The modification of ultraviolet illumination to resistive switching behaviors in Ga2O3 memory device

  • Lei Zhang
  • Hao Yu
  • Lingxing Xiong
  • Wenhui ZhuEmail author
  • Liancheng WangEmail author
Article
  • 12 Downloads

Abstract

The modulating resistive switching behaviors accompanied ultraviolet (UV) photo response phenomena are demonstrated by changing the UV light intensities in the Ti/Ga2O3/Pt memory device. The analysis of the photodecay processes indicate that the UV light can induce the photo-generated carriers and oxygen defects, affecting the Schottky barrier and the photodecay time. On the other hand, the photo-generated carriers and oxygen defects can decrease the Schottky barrier and benefit to the formation of multiple conducting filaments (CFs) under the electric field, effectively decreasing the forming and switching voltages. Meanwhile, the different UV light intensity can affect the CFs’ size, realizing the multilevel memory in the Ga2O3-based device.

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB0406702), the Professorship Start-up Funding (Grant No. 217056, 218091), the Innovation-Driven Project of Central South University, China (Grant No. 2018CX001), the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University, China (Grant No. ZZYJKT2018-01).

References

  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, L. Zhu, X.M. Li, Z. Xu, W.L. Wang, X.D. Bai, Sci. Rep. 7, 45143 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, H.Y. Xu, Z.Q. Wang, H. Yu, J.G. Ma, Y.C. Liu, Appl. Surf. Sci. 360, 338 (2016)CrossRefGoogle Scholar
  4. 4.
    L.L. Zou, W. Hu, W. Xie, R.Q. Chen, N. Qin, B.J. Li, D.H. Bao, Appl. Surf. Sci. 311, 697 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Xu, Y. Bando, W.L. Wang, X.D. Bai, D. Golberg, ACS Nano 4, 2515 (2010)CrossRefGoogle Scholar
  6. 6.
    J.C. Scott, L.D. Bozano, Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452 (2007)CrossRefGoogle Scholar
  7. 7.
    S.H. Jo, W. Lu, Nano Lett. 8, 392 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Zhuge, W. Dai, C.L. He, A.Y. Wang, Y.W. Liu, M. Li, Y.H. Wu, P. Cui, R.W. Li, Appl. Phys. Lett. 96, 3505 (2010)CrossRefGoogle Scholar
  9. 9.
    M.C. Chen, T.C. Chang, C.T. Tsai, S.Y. Huang, S.C. Chen, C.W. Hu, S.M. Sze, M.J. Tsai, Appl. Phys. Lett. 96, 2110 (2010)Google Scholar
  10. 10.
    L. Zhang, H.Y. Xu, Z.Q. Wang, H. Yu, X.N. Zhao, J.G. Ma, Y.C. Liu, Appl. Phys. Lett. 104, 3512 (2014)Google Scholar
  11. 11.
    L. Zhang, H.Y. Xu, Z.Q. Wang, X.N. Zhao, J.G. Ma, Y.C. Liu, J. Phys. D 47, 5101 (2014)Google Scholar
  12. 12.
    C.W. Hsu, L.J. Chou, Nano Lett. 12, 4247 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Zhang, S. Yoo, S. Menzel, F. Cvppers, D.J. Wouters, C.S. Hwang, R. Waser, S. Hoffmann-Eifert, ACS Appl. Mater. Interfaces 10, 29766 (2018)CrossRefGoogle Scholar
  14. 14.
    M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)CrossRefGoogle Scholar
  15. 15.
    M.H. Lin, M.C. Wu, C.Y. Huang, C.H. Lin, T.Y. Tseng, J. Phys. D 43, 5404 (2010)Google Scholar
  16. 16.
    S. Lany, A. Zunger, Phys. Rev. Lett. 98, 5501 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Russo, M. Xiao, R. Liang, N.Y. Zhou, Adv. Funct. Mater. 28, 6230 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Bera, H.Y. Peng, J. Lourembam, Y. Shen, X.W. Sun, T. Wu, Adv. Funct. Mater. 23, 4977 (2013)CrossRefGoogle Scholar
  19. 19.
    C.C. Shih, K.C. Chang, T.C. Chang, T.M. Tsai, R. Zhang, J.H. Chen, K.H. Chen, T.F. Young, H.L. Chen, J.C. Lou, T.J. Chu, S.Y. Huang, D.H. Bao, S.M. Sze, IEEE Electron Device Lett. 35, 633 (2014)CrossRefGoogle Scholar
  20. 20.
    M.A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S.J. Pearton, ECS J. Solid State Sci. Technol. 6, 356 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 5, 2391 (2018)CrossRefGoogle Scholar
  22. 22.
    J. Frank, M. Fleischer, H. Meixner, A. Feltz, Sens. Actuators B 49, 110 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Higashiwaki, A. Kuramata, H. Murakami, Y. Kumagai, J. Phys. D 50, 3002 (2017)CrossRefGoogle Scholar
  24. 24.
    T. Minami, Y. Nishi, T. Miyata, Appl. Phys. Express 6, 4101 (2013)CrossRefGoogle Scholar
  25. 25.
    G.D. Mukherjee, S.N. Vaidya, V. Sugandhi, Phys. Rev. Lett. 87, 195501 (2001)CrossRefGoogle Scholar
  26. 26.
    Y.T. Tseng, T.M. Tsai, T.C. Chang, C.C. Shih, K.C. Chang, R. Zhang, K.H. Chen, J.H. Chen, Y.C. Li, C.Y. Lin, Y.C. Hung, Y.E. Syu, J.C. Zheng, S.M. Sze, Appl. Phys. Lett. 106, 3505 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.Q. Wang, H.Y. Xu, L. Zhang, X.H. Li, J.G. Ma, X.T. Zhang, Y.C. Liu, Nanoscale 5, 4490 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M.X. Zhang, M.D. Pickett, J.P. Strachan, G.M. Ribeiro, R.S. Williams, ACS Nano 6, 2312 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Zhao, F. Wang, H.Y. Chen, Y.P. Wang, M.M. Jiang, X.S. Fang, D.X. Zhao, Nano Lett. 15, 3988 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Park, S. Lee, K. Yong, Nanotechnology 23, 385707 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J.G. Zheng, J. Liu, ACS Nano 6, 1051 (2012)CrossRefGoogle Scholar
  32. 32.
    S.J. Cui, Z.X. Mei, Y.H. Zhang, H.L. Liang, X.L. Du, Adv. Opt. Mater. 5, 1700454 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Huang, Q. Feng, G.Q. Han, F. Li, X. Li, L.W. Fang, X.Y. Xing, J.C. Zhang, Y. Hao, IEEE Photon. J. 9, 6802708 (2017)Google Scholar
  34. 34.
    L.P. Dong, R.X. Jia, B. Xin, B. Peng, Y.M. Zhang, Sci. Rep. 7, 40160 (2017)CrossRefGoogle Scholar
  35. 35.
    N. Xu, L.F. Liu, X. Sun, X.Y. Liu, D.D. Han, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, Appl. Phys. Lett. 92, 2112 (2008)Google Scholar
  36. 36.
    Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu, Adv. Funct. Mater. 22, 2759 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.School of Electronic and Computer Engineering, Shenzhen Graduate SchoolPeking UniversityShenzhenPeople’s Republic of China

Personalised recommendations