Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors

  • Yanyan Lv
  • Yi Zhou
  • Ziqiang ShaoEmail author
  • Yanhua Liu
  • Jie Wei
  • Zhengqing Ye


In order to meet the urgent needs of portable and flexible devices in today’s society, it is strongly demanded to develop a next-generation, low-cost, flexible, lightweight, and sustainable supercapacitor system with high electrochemical performance and good operational safety. Here, a new type of highly flexible and lightweight all-solid-state supercapacitor is developed by using the freestanding and highly porous nanohybrid aerogel films consisting of carbon nanosphere fibers (CNPFs)/molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) as electrodes and using H2SO4/polyvinyl alcohol (PVA) gel as electrolyte. The CNPFs/MoS2/RGO nanohybrid aerogels are prepared by one-step pyrolysis of the nanocellulose fibers (NCFs)/MoS2/graphene oxide (GO) aerogels obtained via freeze-drying process. During the pyrolysis process, the NCFs is carbonized to CNPFs and the GO is thermally reduced to RGO. The as-prepared all-solid-state flexible supercapacitors exhibit high specific capacitance of 1144.3 F g−1 at 2 mV s−1 with good cycling stability of more than 98% of the capacitance is retained after 10,000 charge–discharge cycles at a current density of 5 mA cm−2. Moreover, they can deliver high energy density and power density which are up to 57.5 µW h cm−2 (28.8 W h kg−1) and 29.1 mW cm−2 (14.5 kW kg−1), respectively. Therefore, we provide the highly porous CNPFs/MoS2/RGO nanohybrid aerogels with characteristics of superior electrochemical performance, remarkable bending stability, environmental friendliness and low cost will be a potential promising electrode material for highly flexible all-solid-state supercapacitors.



We are grateful for the support of the Key Science and Technology Project of Jiangsu Province.

Supplementary material

10854_2019_1180_MOESM1_ESM.pdf (705 kb)
Supplementary material 1 (PDF 705 KB)


  1. 1.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  2. 2.
    H.C. Chien, W.Y. Cheng, Y.H. Wang, S.Y. Lu, Adv. Funct. Mater. 22, 5038–5043 (2012)CrossRefGoogle Scholar
  3. 3.
    Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Adv. Energy Mater. 1, 901–907 (2011)CrossRefGoogle Scholar
  4. 4.
    X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23, 2833–2838 (2011)CrossRefGoogle Scholar
  5. 5.
    B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 2826–2830 (2011)CrossRefGoogle Scholar
  6. 6.
    C.X. Guo, C.M. Li, Energy Environ. Sci. 4, 4504–4507 (2011)CrossRefGoogle Scholar
  7. 7.
    S.R. Forrest, Nature 428, 911–918 (2004)CrossRefGoogle Scholar
  8. 8.
    C.D.D.D.J. Mascaro, IBM J. Res. Dev. 45, 11–27 (2001)CrossRefGoogle Scholar
  9. 9.
    M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Chem. Soc. Rev. 42, 2986–3017 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Pumera, Z. Sofer, A. Ambrosi, J. Mater. Chem. A 2, 8981–8987 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.F. Li, Z. Zhou, S.B. Zhang, Z.F. Chen, J. Am. Chem. Soc. 130, 16739–16744 (2008)CrossRefGoogle Scholar
  12. 12.
    K.C.a.W. Chen, ACS Nano 5, 4720–4728 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Tenne, Adv. Mater. 7, 965–995 (1995)CrossRefGoogle Scholar
  14. 14.
    J.M. Soon, K.P. Loh, Electrochemical and Solid State Letters 10, A250–A254 (2007)CrossRefGoogle Scholar
  15. 15.
    S.J. Ding, J.S. Chen, X.W. Lou, Chemistry 17, 13142–13145 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Chang, W.X. Chen, L. Ma, H. Li, H. Li, F.H. Huang, Z.D. Xu, Q.B. Zhang, J.Y. Lee, J. Mater. Chem. 21, 6251–6257 (2011)CrossRefGoogle Scholar
  17. 17.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  18. 18.
    L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983–5992 (2010)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21, 6494–6497 (2011)CrossRefGoogle Scholar
  20. 20.
    F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24, 1089–1094 (2012)CrossRefGoogle Scholar
  21. 21.
    L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Nano Lett. 12, 1806–1812 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Pumera, Energy Environ. Sci. 4, 668–674 (2011)CrossRefGoogle Scholar
  23. 23.
    K. Zhang, L. Mao, L.L. Zhang, H.S.O. Chan, X.S. Zhao, J.S. Wu, J. Mater. Chem. 21, 7302–7307 (2011)CrossRefGoogle Scholar
  24. 24.
    L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C.G. Hu, Y.X. Tong, J. Zhou, Z.L. Wang, Acs Nano 6, 656–661 (2012)CrossRefGoogle Scholar
  25. 25.
    H. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chemie-Int. Ed. 49, 4059–4062 (2010)CrossRefGoogle Scholar
  26. 26.
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40, 3941–3994 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 50, 5438–5466 (2011)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Lv, L. Li, Y. Zhou, M. Yu, J.Q. Wang, J.X. Liu, J.G. Zhou, Z.Q. Fan, Z.Q. Shao, Rsc Adv. 7, 43512–43520 (2017)CrossRefGoogle Scholar
  29. 29.
    W. Chen, H. Yu, Q. Li, Y. Liu, J. Li, Soft matter 7, 10360–10368 (2011)CrossRefGoogle Scholar
  30. 30.
    Q. Zheng, Z. Cai, S. Gong, J. Mater. Chem. A 2, 3110–3118 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Sehaqui, Q. Zhou, L.A. Berglund, Compos. Sci. Technol. 71, 1593–1599 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025–4031 (2010)CrossRefGoogle Scholar
  33. 33.
    V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotechnol. 4, 25–29 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Isogai, T. Saito, H. Fukuzumi, Nanoscale 3, 71–85 (2011)CrossRefGoogle Scholar
  35. 35.
    L.P. Wang, C. Schutz, G. Salazar-Alvarez, M.M. Titirici, Rsc Advances 4, 17549–17554 (2014)CrossRefGoogle Scholar
  36. 36.
    G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H.Liu,J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)CrossRefGoogle Scholar
  37. 37.
    G. Tonoli, E. Teixeira, A. Corrêa, J. Marconcini, L. Caixeta, M. Pereira-da-Silva, L. Mattoso, Carbohydr. Polym. 89, 80–88 (2012)CrossRefGoogle Scholar
  38. 38.
    X.-L. Li, Y.-D. Li, J. Phys. Chem. B 108, 13893–13900 (2004)CrossRefGoogle Scholar
  39. 39.
    K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A 1, 63–67 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, Y. Feng, Mater. Lett. 73, 223–225 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. Kong, M.H. Fan, X.D. Shen, S. Cuibc, A.G. Russelld, Chem. Commun. 50, 12158–12161 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169–3183 (2001)CrossRefGoogle Scholar
  43. 43.
    A. Di Fabio, A. Giorgi, M. Mastragostino, F. Soavi, J. Electrochem. Soc. 148, A845–A850 (2001)CrossRefGoogle Scholar
  44. 44.
    H. Fei, N. Saha, N. Kazantseva, T. Babkova, M. Machovsky, G. Wang, H. Bao, P. Saha, J. Mater. Sci. 29, 3025–3034 (2017)Google Scholar
  45. 45.
    F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Mater. Sci. 29, 2525–2536 (2017)Google Scholar
  46. 46.
    M.A. Maier, R. Suresh Babu, D.M. Sampaio, A.L.F. de Barros, J. Mater. Sci. 28, 17405–17413 (2017)Google Scholar
  47. 47.
    S. Sundriyal, M. Sharma, A. Kaur, S. Mishra, J. Mater. Sci. 29, 12754–12764 (2018)Google Scholar
  48. 48.
    X.F. Yuan, B. Tang, Y.W. Sui, S.F. Huang, J.Q. Qi, Y.G. Pu, F.X. Wei, Y.Z. He, Q.K. Meng, P. Cao, J. Mater. Sci. 29, 8636–8648 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations