Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent


Low capacity and poor cycle stability are two typical drawbacks of Na2Ti3O7 when applied to the sodium-ion batteries as electrode materials. Here, we successfully synthesized Na2Ti3O7 by a mild process in chloride/ethylene glycol-based deep eutectic solvent. The prepared Na2Ti3O7 overcomes the above drawbacks of Na2Ti3O7 which was synthesized by conventional methods. Our synthesized Na2Ti3O7 can deliver discharge capacities of 127 mAh g−1 after 50 cycles and 72 mAh g−1 after 2000 cycles at current density of 1C and 5C, respectively. This cheap and environmentally friendly Na2Ti3O7 exhibits excellent rate performance and cycling stability. In addition, we also further investigate the sodium storage mechanism of this product, the results show that pesudocapacitive behaviors account for a large proportion of its capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    H. Tang, M.B. Zheng, Q. Hu, Y. Chi, B.Y. Xu, S.T. Zhang, H.G. Xue, H. Pang, J. Mater. Chem. A​ 6, 13999–14024 (2018)

  2. 2.

    P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 8, 1703259 (2018)

  3. 3.

    C.Z. Wei, C. Cheng, J. Zhao, Y. Wang, Y. Cheng, Y. Xu, W. Du, H. Pang, Chem. Asian J. 10, 679–686 (2015)

  4. 4.

    Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, Small 14, 1704435 (2018)

  5. 5.

    M. Armand, J.M. Tarascon, Nature​ 451, 652–657 (2008)

  6. 6.

    M. Dynarowska, J. Kotwinski, M. Leszczynska, M. Marzantowicz, F. Krok, Solid State Ion.​ 301, 35–42 (2017)

  7. 7.

    Z. Wu, R. Huang, H. Yu, Y. Xie, X. Lv, J. Su, Y. Long, Y. Wen, Materials​ 10, 134 (2017)

  8. 8.

    D.V. Wagle, H. Zhao, G.A. Baker, Acc. Chem. Res.​​ 47, 2299–2308 (2014)

  9. 9.

    Q. Wang, B. Dong, Y. Zhao, F. Huang, J. Xie, G. Cui, B. Tang, Chem. Eng. J. 348, 811–819 (2018)

  10. 10.

    R. Boston, P.Y. Foeller, D.C. Sinclair, I.M. Reaney, Inorg. Chem.​​ 56, 542–547 (2017)

  11. 11.

    K. Upendar, A.S.H. Kumar, N. Lingaiah, K.S.R. Rao, P.S.S.Prasad, Int. J. Greenh. Gas Con​. 10, 191–198 (2012)

  12. 12.

    W. Zou, J. Li, Q. Deng, J. Xue, X. Dai, A. Zhou, J. Li, Solid State Ion. 262, 192–196 (2014)

  13. 13.

    W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu, S. Jiao, Nanoscale 5, 594–599 (2013)

  14. 14.

    H. Wang, J. Liao, B. Zou, Z. Tang, X. Sun, Z. Wen, C. Chen, Mater. Lett. 186, 326–329 (2017)

  15. 15.

    J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Adv. Energy Mater. 6 (2016)

  16. 16.

    J. Chen, X. Zhou, C. Mei, J. Xu, C. Wong, Electrochim. Acta 224, 446–451 (2017)

  17. 17.

    H. Pan, X. Lu, X. Yu, Y. Hu, H. Li, X. Yang, L. Chen, Adv. Energy Mater. 3, 1186–1194 (2013)

  18. 18.

    M. Shirpour, J. Cabana, M. Doeff, Energ. Environ. Sci. 6, 2538–2547 (2013)

  19. 19.

    Z. Wu, Y.F. Long, X.Y. Lv, J. Su, Y.X. Wen, Ceram. Int. 43, 6089–6095 (2017)

  20. 20.

    J. Xu, C. Ma, M. Balasubramanian, Y.S. Meng, Chem. Commun. 50, 12564–12567 (2014)

  21. 21.

    J.S. Ko, V.V.T. Doan-Nguyen, H. Kim, G.A. Muller, A.C. Serino, P.S. Weiss, B.S. Dunn, ACS Appl. Mater. Interfaces 9, 1416–1425 (2017)

  22. 22.

    Z. Zhou, H. Xiao, F. Zhang, X. Zhang, Y. Tang, Electrochim. Acta 211, 430–436 (2016)

  23. 23.

    S. Fu, J. Ni, Y. Xu, Q. Zhang, L. Li, Nano Lett. 16, 4544–4551 (2016)

  24. 24.

    Q. Gui, D. Ba, Z. Zhao, Y. Mao, W. Zhu, T. Lei, J. Tan, B. Deng, L. Xiao, Y. Li, J. Liu, Small Methods, 3, 1800371 (2019)

  25. 25.

    L. Que, F. Yu, K. He, Z. Wang, D. Gu, Chem. Mater. 29, 9133–9141 (2017)

  26. 26.

    S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang, F. Wu, ACS Appl. Mater. Interfaces 9, 11669–11677 (2017)

  27. 27.

    M. Xie, K. Wang, R. Chen, L. Li, F. Wu, Chem. Res. Chin. Univ. 31, 443–446 (2015)

  28. 28.

    V. Augustyn, P. Simon, B. Dunn, Energ. Environ. Sci. 7, 1597–1614 (2014)

  29. 29.

    T. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu, S. Dou, Adv. Funct. Mater. 26, 2198–2206 (2016)

  30. 30.

    T. Wei, M. Zhang, P. Wu, Y.J. Tang, S.L. Li, F.C. Shen, X.L. Wang, X.P. Zhou, Y.Q. Lan, Nano Energy 34, 205–214 (2017)

  31. 31.

    S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, J. Mater. Chem. A 3, 21277–21283 (2015)

  32. 32.

    F. Xie, L. Zhang, D. Su, M. Jaroniec, S.Z. Qiao, Adv. Mater. 29, 1700989 (2017)

Download references


The authors are thankful for support from National Science Foundation of China (21606055).

Author information

Correspondence to Jing Su or Yanxuan Wen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1441 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, Y., Chen, Z. et al. A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent. J Mater Sci: Mater Electron 30, 8422–8427 (2019).

Download citation