Advertisement

In situ deposition of black α-FAPbI3 films by vacuum flash evaporation for solar cells

  • Fuzong Xu
  • Yongshang Tian
  • Wenzhen Wang
  • Yanyan Zhu
  • Liya Zeng
  • Bo Yao
  • Zebo Fang
  • Haitao XuEmail author
  • Run XuEmail author
  • Fei XuEmail author
  • Feng Hong
  • Linjun Wang
Article
  • 66 Downloads

Abstract

Formamidinium lead iodide (FAPbI3) is a promising candidate as the solar cell absorption layer with a suitable band gap of 1.45 eV and excellent optoelectronic properties. In this work, we report a new vacuum flash evaporation method to deposit phase-pure black α-FAPbI3 films in situ on low-temperature substrates without post-annealing, and the area of deposited films can be up to 36 cm2 (6 cm × 6 cm). Besides, the unique relationship between substrate temperature and phases in films is demonstrated for the further development of the method. With the α-FAPbI3 films as the active layer, perovskite solar cells with power conversion efficiency of 12.55% are fabricated.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872186 and 51672172), the Zhejiang Provincial Natural Science Foundation (Grant No. LQ19F040002), and the Scientific and Technical Plan Project of Shaoxing City (Grant No. 2017B70063). The authors also thank Instrumental Analysis and Research Center of Shanghai University for XRD and SEM measurement.

References

  1. 1.
    T.M. Akihiro, K. Kojima, Y. Teshima, Shirai, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  3. 3.
    J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)CrossRefGoogle Scholar
  4. 4.
    H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 1–7 (2013)Google Scholar
  5. 5.
    N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013)CrossRefGoogle Scholar
  6. 6.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 Micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Graẗzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K.Y. Jen, H.J. Snaith, High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013)CrossRefGoogle Scholar
  9. 9.
    M.J. Carnie, C. Charbonneau, M.L. Davies, J. Troughton, T.M. Watson, K. Wojciechowski, H. Snaith, D.A. Worsley, A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. 49, 7893–7895 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Hodes, Perovskite-based solar cells. Science 342, 317–318 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Hishikawa, E.D. Dunlop, D.H. Levi, M.A. Green, J. Hohl, E. Masahiro, Y. Anita, W.Y.H. Baillie, Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl. 2, 3–12 (2019)Google Scholar
  12. 12.
    V.L. Pool, B. Dou, D.G. Van Campen, T.R. Klein-Stockert, F.S. Barnes, S.E. Shaheen, M.I. Ahmad, M.F.A.M. Van Hest, M.F. Toney, Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 8, 1–8 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)CrossRefGoogle Scholar
  14. 14.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)CrossRefGoogle Scholar
  15. 15.
    L.-C. Chen, J.-R. Wu, Z.-L. Tseng, C.-C. Chen, S. Chang, J.-K. Huang, K.-L. Lee, H.-M. Cheng, Annealing effect on (FAPbI3)1–x(MAPbBr3)x perovskite films in inverted-type perovskite solar cells. Materials 9, 747 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Wu, X. Zheng, Q. Yang, Y. Yan, M. Sanghadasa, S. Priya, Crystallization of HC(NH2)2PbI3 black polymorph by solvent intercalation for low temperature solution processing of perovskite solar cells. J. Phys. Chem. C 120, 26710–26719 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Wozny, M. Yang, A.M. Nardes, C.C. Mercado, S. Ferrere, M.O. Reese, W. Zhou, K. Zhu, Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 27, 4814–4820 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Ye, H. Zheng, L. Zhu, X. Zhang, L. Jiang, W. Chen, G. Liu, X. Pan, S. Dai, High-temperature shaping perovskite film crystallization for solar cell fast preparation. Sol. Energy Mater. Sol. Cells 160, 60–66 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Xu, Q. Chen, Z. Hong, H. Zhou, Z. Liu, W.H. Chang, P. Sun, H. Chen, N. De Marco, M. Wang, Y. Yang, Working mechanism for flexible perovskite solar cells with simplified architecture. Nano Lett. 15, 6514–6520 (2015)CrossRefGoogle Scholar
  20. 20.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il, Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Xu, Y. Wu, F. Xu, J. Zhu, C. Ni, W. Wang, F. Hong, R. Xu, F. Xu, J. Huang, L. Wang, Grain growth study of perovskite thin films prepared by flash evaporation and its effect on solar cell performance. RSC Adv. 6, 48851–48857 (2016)CrossRefGoogle Scholar
  22. 22.
    A.F. da Silva, N. Veissid, C.Y. An, Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69, 1930 (1996)CrossRefGoogle Scholar
  23. 23.
    M. Shkir, H. Abbas, Z. Raza, Journal of Physics and Chemistry of Solids Effect of thickness on the structural, optical and electrical properties of thermally evaporated PbI2 thin films. J. Phys. Chem. Solids 73, 1309–1313 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N.P. Padture, G. Cui, Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 27, 7149–7155 (2015)CrossRefGoogle Scholar
  25. 25.
    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)CrossRefGoogle Scholar
  26. 26.
    G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376–7378 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright, L. Mart, H.J. Snaith, L.M. Herz, M.B. Johnston, Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M.D. Mcgehee, Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsShaoxing UniversityShaoxingChina
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  3. 3.SHU-Solar E R&D Lab, Department of Physics, Shanghai Key Laboratory of High Temperature SuperconductorsShanghai UniversityShanghaiChina

Personalised recommendations