Probing the impact of surface reactivity on charge transport in dimensional phase changed tungsten films

  • Ananya Chattaraj
  • Saif Khan
  • Lukasz Walczak
  • Aloke KanjilalEmail author


A clear understanding of the surface chemical reactivity of tungsten (W) films is indispensable for photocatalytic, sensing and memory applications, especially in the presence of WOx (0 ≤ x ≤ 3) for low thicknesses. Here, surface reactivity of the film through diffusion of oxygen and its ability to make bonds with W is identified by X-ray photoelectron spectroscopy (XPS). Further inspection of XPS valence band spectra confirms the possible hybridization of W 5d and O 2p electrons in the presence of defect states near Fermi level. Exploration of surface morphology by scanning electron microscopy (SEM) reveals agglomeration of grains with increasing film thickness. Detailed microstructural and grazing-incidence X-ray diffraction (GIXRD) studies suggest the formation of β W nanocrystallites in amorphous matrix, and establish a knowledge of thickness dependent phase transformation of W beside surface oxidation. The nonlinear surface current–voltage characteristics at low thickness further indicates dimensional phase change owing to the involvement of point defects. We also report a detailed study of interstitial and vacancy mediated diffusion probability of oxygen in W films, where the estimated diffusion constant is found to be relatively higher than that of other body-centered cubic transition metals.



The authors would like to acknowledge the financial support received from Shiv Nadar University and Department of Science and Technology, India under the project number of DST/EMR/2014/000971. Authors would also like to thank Dr. Ashish Kumar from IUAC, New Delhi for his kind help in electrical measurements. AC would like to acknowledge the help received from Mr. Joshua Asirvatham and Mr. Dip Das from Shiv Nadar University.


  1. 1.
    M.M. Peter, A. Gregory, K.E. Horrocks, S. Pelcher, Banerjee, Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem. Commun. 51, 5181–5198 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Fukaya, M. Hashimoto, A. Kawasuso, A. Ichimiya, Structure and phase transition of low-dimensional metals on Si (111) surfaces studied by reflection high-energy positron diffraction. J. Phys.: Conf. Ser. 225, 012008 (2010)Google Scholar
  3. 3.
    W.M. Xiong, J. Shao, Y.Q. Zhang, Y. Chen, X.Y. Zhang, W.J. Chen, Y. Zheng, Morphology-controlled epitaxial vanadium dioxide low-dimensional structures: the delicate effects on the phase transition behaviors. Phys. Chem. Chem. Phys. 20, 14339–14347 (2018)CrossRefGoogle Scholar
  4. 4.
    X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M.A. Iqbal, L. Xie (2018) Potential 2D materials with phase transitions: structure, synthesis, and device applications advanced materials. Adv. Mater. Google Scholar
  5. 5.
    A.S. Foster, A.L. Shluger, R.M. Nieminen, Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. Lett. 89, 225901 (2002)CrossRefGoogle Scholar
  6. 6.
    X. Wang, M. Posselt, J. Faßbender, Influence of substitutional atoms on the diffusion of oxygen in dilute iron alloys. Phys. Rev. B 98, 064103 (2018)CrossRefGoogle Scholar
  7. 7.
    C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J. K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surf. Sci. 681, 122–129 (2019)CrossRefGoogle Scholar
  8. 8.
    H. Zhao, F. Pan, Y. Li, A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. J. Materiomics 3, 17–32 (2017)CrossRefGoogle Scholar
  9. 9.
    B.W. Lee, T.S. Kim, S.K. Goswami, E. Oh, Gas sensitivity and point defects in sonochemically grown ZnO nanowires. J. Korean Phys. Soc. 60(3), 415–419 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations: from forming to switching. IEEE Trans. Elect. Dev. 62(6), 1998–2006 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Xu, Y. Teng, F. Teng, Effect of surface defect states on valence band and charge separation and transfer efficiency. Sci. Rep. 6, 32457 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRefGoogle Scholar
  13. 13.
    J.G. Yu, W.J. Han, Z.C. Sun, K.G. Zhu, Morphology and microstructure of tungsten films by magnetron sputtering. Mater. Sci. Forum 913, 416–423 (2018)CrossRefGoogle Scholar
  14. 14.
    Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, W.E. McBride, Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering. J. Appl. Phys. 87, 177–187 (2000)CrossRefGoogle Scholar
  15. 15.
    H.L. Sun, Z.X. Song, D.G. Guo, F. Ma, K.W. Xu, Microstructure and mechanical properties of nanocrystalline tungsten thin films. J. Mater. Sci. Technol. 26, 87–92 (2010)CrossRefGoogle Scholar
  16. 16.
    T.J. Vink, W. Walrave, J.L.C. Daams, A.G. Dirks, M.A.J. Somers, K. Van den Aker, Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering. J. Appl. Phys. 74, 988–995 (1993)CrossRefGoogle Scholar
  17. 17.
    M.S. Aouadi, R.R. Parsons, P.C. Wong, K.A.R. Mitchell, Characterization of sputter deposited tungsten films for X-ray multilayers. J. Vac. Sci. Technol. A 10, 273–280 (1992)CrossRefGoogle Scholar
  18. 18.
    I.A. Weerasekera, S.I. Shah, D.V. Baxter, K.M. Unruh, Structure and stability of sputter deposited beta-tungsten thin films. Appl. Phys. Lett. 64, 3231–3233 (1994)CrossRefGoogle Scholar
  19. 19.
    K. Heinola, T. Ahlgren, Diffusion of hydrogen in bcc tungsten studied with first principle calculations. J. Appl. Phys. 107, 113531 (2010)CrossRefGoogle Scholar
  20. 20.
    M.E. Eberhart, M.M. Donovan, R.A. Outlaw, Ab initio calculations of oxygen diffusivity in group-IB transition metals. Phys. Rev. B 46, 12744 (1992)CrossRefGoogle Scholar
  21. 21.
    O. Keefe, M.J. Grant, Phase transformation of sputter deposited tungsten thin films with A-15 structure. J. Appl. Phys. 79, 9134–9141 (1996)CrossRefGoogle Scholar
  22. 22.
    N. Radić, A. Tonejc, J. Ivkov, P. Dubček, S. Bernstorff, Z. Medunić, Sputter-deposited amorphous-like tungsten. Surf. Coatings Technol. 180, 66–70 (2004)CrossRefGoogle Scholar
  23. 23.
    A.B. Kiss, Thermoanalytical Study of the Composition of β-tungsten. J. Therm. Anal. Cal. 54, 815–824 (1998)CrossRefGoogle Scholar
  24. 24.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles. Sol. State Commun. 149, 1919–1923 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Chastain (ed.) Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Physical Electronics Division, Minnesota, 1992)Google Scholar
  26. 26.
    L. Salvati Jr., L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules, Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J. Phys. Chem. 85, 3700–3707 (1981)CrossRefGoogle Scholar
  27. 27.
    D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, R. Stockbauer, A synchrotron radiation study of BaO films on W (001) and their interaction with H2O, CO2, and O2. J. Vac. Sci. Technol. A 6, 1067–1071 (1988)CrossRefGoogle Scholar
  28. 28.
    M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010)CrossRefGoogle Scholar
  29. 29.
    D.D. Sarma, C.N.R.J. Rao, Electron Spectrosc. Relat. Phenom. 20, 25 (1980)CrossRefGoogle Scholar
  30. 30.
    F.P.J.M. Kerkhof, J.A. Moulijn, A. Heeres, The XPS spectra of the metathesis catalyst tungsten oxide on silica gel. J. Electron Spectrosc. Relat. Phenom. 14, 453–466 (1978)CrossRefGoogle Scholar
  31. 31.
    A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, XPS studies of active elements surface of gas sensors based on WO3–x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 156, 172–175 (2007)CrossRefGoogle Scholar
  32. 32.
    O. Bouvard, A. Krammer, A. Schueler, In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered tungsten oxide films. Surf. Interf. Anal. 48, 660–663 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Kanjilal, S. Gemming, L. Rebohle, A. Muecklich, T. Gemming, M. Voelskow, W. Skorupa, M. Helm, Phys. Rev. B 83, 113302 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Ohring, Materials Science of Thin Film Deposition and Structure, 2nd ed. (Elsevier, Hoboken, 1900)Google Scholar
  35. 35.
    M.A. Angadi, L.A. Udachan, The effect of substrate temperature on the electrical properties of thin chromium films. J. Mater. Sci. 16, 1412–1415 (1981)CrossRefGoogle Scholar
  36. 36.
    J.A. Thornton, Substrate heating in cylindrical magnetron sputtering sources. Thin Solid Films 54, 23–31 (1978)CrossRefGoogle Scholar
  37. 37.
    M. Tringides, R. Gomer, A Monte Carlo study of oxygen diffusion on the (110) plane of tungsten. Surf. Sci. 145, 121–144 (1984)CrossRefGoogle Scholar
  38. 38.
    A. Alkauskas, M.D. McCluskey, C.G. Van de Walle, tutorial: defects in semiconductors—combining experiment and theory. J. Appl. Phys. 119, 181101 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Fujita, J. Neugebauer, General theory of interstitial diffusion in crystals. J. Phys. Chem. Solids 49, 561–571 (1988)CrossRefGoogle Scholar
  40. 40.
    A.J. Jacobs, Diffusion of oxygen in tungsten and some other transition metals. Nature 200, 1310 (1963)CrossRefGoogle Scholar
  41. 41.
    B. Chikh-Bled, B. Benyoucef, M. Aillerie, Experimental measurement of electric conductivity and activation energy in congruent lithium niobate crystal. J. Act. Pass. Electron. Dev. 7, 261–270 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Natural SciencesShiv Nadar UniversityGautam Buddha NagarIndia
  2. 2.Inter-University Accelerator CentreNew DelhiIndia
  3. 3.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakowPoland

Personalised recommendations