Effect of particles size on magnetodielectric, magnetoimpedance and electrical properties of LaFeO3 nanoparticles

  • Debajyoti Nath
  • S. K. MandalEmail author
  • Rajesh Debnath
  • A. Nath


Effect of particles size on the behavior of magnetoimpedance, magnetodielectric and detailed electrical properties of structural characterized LaFeO3 nanoparticles prepared through chemical ‘pyrophoric reaction’ technique having particles size of ~ 21, 43 and 51 nm have investigated. Dielectric constant of these nanoparticles gives the evidence of space charge polarization in the sample at lower frequency regime. Maximum magnetodielectric effect is obtained to ~ 61% at room temperature for particle size of ~ 21 nm, which may be due to the large surface to volume ratio of this nanoparticles compared to other particles size attributing the enhancement of space charge polarization. The maximum value of magnetoimpedance is found to ~ 92% for ~ 21 nm nanoparticle at room temperature. Magnetic field and frequency dependence room temperature magnetoimpedance are decreased with particles size of the nanoparticles. This behaviour has been explained through the light of classical electrodynamics, which reveals that this effect is depending on the magnetic field and ac signal frequency. Impedance spectroscopy is employed to study the electrical transport properties of the samples considering an equivalent circuit model for the effect of nanometric grain size. The electrical relaxation process of these materials is temperature dependent. Furthermore, ac conductivity curves follow the Jonscher’s power law for electrical conduction process of the system through polaronic hopping.



Authors acknowledges to the DST Project (No. SR/FTP/PS-019/2012), DST FIST project (SR/FST/PSI – 013/ 2014) India and CRF NIT Agartala for providing us some experimental facilities.


  1. 1.
    S. Javaid, M.J. Akhtar, J. Appl. Phys. 116, 023704 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Geller, P.M. Raccah, Phys. Rev. B 2, 1167 (1970)CrossRefGoogle Scholar
  3. 3.
    S.M. Selbach, J.R. Tolchard, A. Fossdal, T. Grande, J. Solid State Chem. 196, 249–254 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Peng, L. Fu, H. Yang, J. Ouyang, Sci. Rep. 6, 19723 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater 329, 133–141 (2013)CrossRefGoogle Scholar
  6. 6.
    J.N. Kuhn, U.S. Ozkan, J. Catal. 253, 200–211 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Wei, H. Gui, Z. Zhao, J. Li, Y. Liu, S. Xin, X. Li, W. Xie, AIP Adv. 4, 127134 (2014)CrossRefGoogle Scholar
  8. 8.
    J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson, W.J. Weber, J. Electrochem. Soc. 143(9), 2722–2729 (1996)CrossRefGoogle Scholar
  9. 9.
    M. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118(1), 125–132 (1995)CrossRefGoogle Scholar
  10. 10.
    E.A. Tugovaa, V.F. Popovaa, I.A. Zverevab, V.V. Gusarova, Glass Phys. Chem 32, 674–676 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Phokha, S. Pinitsoontorn, S. Maensiri, S. Rujirawat, Sci. Technol. 71, 333–341 (2014)Google Scholar
  12. 12.
    S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Int. J. Hydrogen Energy, 37, 10451–10456 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Li, Y. Liu, Z. Sun, R. Liu, C. Kou, Y. Zha, D. Zhao, Mater. Lett. 65, 406–408 (2011)CrossRefGoogle Scholar
  14. 14.
    W.J. Zheng, R.H. Liu, D.K. Peng, G.Y. Meng, Mater. Lett. 43, 19–22 (2000)CrossRefGoogle Scholar
  15. 15.
    T. Liu, Y. Xu, Mater. Chem. Phys. 129, 1047–1050 (2011)CrossRefGoogle Scholar
  16. 16.
    S.M. Khetre, A.U. Chopade, C.J. Khilare, S.R. Kulal, H.V. Jadhav, P.N. Jagadale, S.V. Bangale, S.R. Bamane, Sci. Technol. 41(2), 250–5347 (2014)Google Scholar
  17. 17.
    J.W. Seo, E.E. Fullerton, F. Nolting, A. Scholl, J. Fompeyrine, J.P. Locquet, J. Phys. 20, 264014 (2008)Google Scholar
  18. 18.
    W. Zheng, R. Liu, D. Peng, G. Meng, Mater. Lett. 43(1–2), 19–22 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Popa, J. Frantti, M. Kakihana, Solid State Ionics 154, 135–141 (2002)CrossRefGoogle Scholar
  20. 20.
    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Ceram. Int. 29, 347–349 (2003)CrossRefGoogle Scholar
  21. 21.
    S. Phokha, S. Pinitsoontorn, S. Rujirawat, S. Maensiri, Physica B. 476, 55–60 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249, 1–5 (2013)CrossRefGoogle Scholar
  23. 23.
    W.Y. Lee, H.J. Yun, J.W. Yoon, J. Alloys Compd. 583, 320–324 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Andoulsi, K.H. Naifer, M. Férid, Powder Technol. 230, 183–187 (2012)CrossRefGoogle Scholar
  25. 25.
    N.T. Thuy, D.L. Minh, Adv. Mater. Sci. Eng. 1155(380306), 1–6 (2012)CrossRefGoogle Scholar
  26. 26.
    A.A. Saad, W. Khan, P. Dhiman, A.H. Naqvi, M. Singh, Elec-tron. Mater. Lett. 9, 77–81 (2013)Google Scholar
  27. 27.
    W.Y. Lee, H.J. Yun, J.W. Yoon, J. Alloy. Compd. 583, 320–324 (2014)CrossRefGoogle Scholar
  28. 28.
    S.K. Mandal, S. Chakraborty, P. Dey, B. Saha, T.K. Nath, J. Alloys Compd. 747, 834–845 (2018)CrossRefGoogle Scholar
  29. 29.
    P. Dutta, S.K. Mandal, A. Nath, Mater. Res. Express. 5, 055003 (2018)CrossRefGoogle Scholar
  30. 30.
    P. Dey, T.K. Nath, Phys. Rev. B 73, 214425 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Marezio, P.D. Dernier, Mater. Res. Bull. 6, 23–30 (1971)CrossRefGoogle Scholar
  32. 32.
    M.P. Klug, L.E. Alexander, X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials (Wiley, New York, 1974), p. 634Google Scholar
  33. 33.
    D. Deb, R. Debnath, S.K. Mandal, A. Nath, P. Dey, J. Alloys Compd. 776, 71–82 (2019)CrossRefGoogle Scholar
  34. 34.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)CrossRefGoogle Scholar
  35. 35.
    D. Nath, S.K. Mandal, A. Nath, Appl. Phys. A 124, 872 (2018)CrossRefGoogle Scholar
  36. 36.
    S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, J. Adv. Cerm. 2(3), 291–300 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Sen, S.K. Mishra, S.S. Palit, S.K. Das, A. Tarafdar, J. Alloys Compd. 453, 395–400 (2008)CrossRefGoogle Scholar
  38. 38.
    V. Prakash, A. Dutta, S.N. Choudhary, T.P. Sinha, Mater. Sci. Eng. B. 142, 98–105 (2007)CrossRefGoogle Scholar
  39. 39.
    I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, J. Appl. Phys. 112, 074105 (2012)CrossRefGoogle Scholar
  40. 40.
    B.P. Chandra, R.K. Chandrakar, V.K. Chandra, R.N. Baghel, Luminescence 31, 478–486 (2016)CrossRefGoogle Scholar
  41. 41.
    B. Dhanalakshmi, P. Kollu, B.P. Rao, P.S. Rao, Ceram. Int. 42, 2186–2197 (2016)CrossRefGoogle Scholar
  42. 42.
    N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. Condens. Matter 14, 3221 (2002)CrossRefGoogle Scholar
  43. 43.
    T.K. Nath, P. Dutta, P. Dey, J. Appl. Phys. 103, 07F725 (2008)CrossRefGoogle Scholar
  44. 44.
    D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of continuous Media (Butterworth - Hinenann, Washington, DC, 1995), p. 210Google Scholar
  45. 45.
    K. Mandal, S.P. Mandal, M. Vazquez, S. Puerta, A. Hernando, Phys. Rev. B 65, 064402 (2002)CrossRefGoogle Scholar
  46. 46.
    K.K. Mohaideen, P.A. Joy, Appl. Mater. Interfaces 4, 6421 (2012)CrossRefGoogle Scholar
  47. 47.
    C.E. Ciomaga, M. Airimioaei, V. Nica, L.M. Hrib, O.F. Caltun, A.R. Iordan, C. Galassi, L. Mitoseriu, M.N. Palamaru, J. Eur. Ceram. Soc. 32, 3325 (2012)CrossRefGoogle Scholar
  48. 48.
    R. Debnath, P. Dey, S. Singh, J.N. Roy, S.K. Mandal, T.K. Nath, J. Appl. Phys. 118, 044104 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng. B. 176, 540–547 (2011)CrossRefGoogle Scholar
  50. 50.
    R. Tang, H. Zhou, J. Huang, M. Fan, H. Wang, J. Jian, H. Wang, H. Yang, Appl. Phys. Let. 110, 242901 (2017)CrossRefGoogle Scholar
  51. 51.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press, New York, 1973) p 828Google Scholar
  52. 52.
    A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999)CrossRefGoogle Scholar
  53. 53.
    A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Eng. B. 116, 1–6 (2005)CrossRefGoogle Scholar
  54. 54.
    K. Kumar, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 117, 114102 (2015)CrossRefGoogle Scholar
  55. 55.
    T.F. Khoon, J. Hassan, Z.A. Wahab, R.S. Azis, Eng. Sci. Technol. Int J. 19, 2081–2087 (2016)CrossRefGoogle Scholar
  56. 56.
    P. Behera, S. Ravi, J. Mater. Sci. Mater. Electron. 29, 20206–20215 (2018)CrossRefGoogle Scholar
  57. 57.
    Y.Z. Wang, G.W. Qiao, X.D. Liu, B.Z. Ding, Z.Q. Hu, Mater. Lett. 17, 152 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology AgartalaTripuraIndia

Personalised recommendations