Growth and physicochemical investigations on wide bandgap 2D polymeric amino acetic acid sulfato dilithium metal–organic framework

  • Vadivel Sasikala
  • Jeyaperumal Kalyana SundarEmail author
  • Muppudathi Anna Lakshmi


To design elevate high power lasers, enormous nonlinear efficiency with laser-induced damage thresholds (LIDTs) materials were required. The wide bandgap can significantly enhance the LIDTs of materials and the introduction of alkali cations would broaden the bandgap. Here we reported non-centrosymmetric alkali cation Li-based 2D polymeric amino acetic acid sulfato dilithium (ASDL) metal–organic framework. The single crystal XRD declared cell parameters of ASDL are good agreement with the reported value. Intermolecular interactions of ASDL molecule were investigated by Hirshfeld surface analysis. The presences of various functional groups have been confirmed by FTIR analysis. The energy values of highest occupied molecular orbital and lowest unoccupied molecular orbital are calculated. The experimental and theoretical bandgap values are 5.25 eV and 5.66 eV respectively. The dipole moment value is 32.9562 D and the first-order hyperpolarizability was 7.678 × 10−30 esu, which is ten times higher compared to the reference urea molecule. The nonlinear efficiency was 2.6 times and LIDT was six times higher than KDP. The title compound is thermally stable upto 270 °C assessed by thermogravimetric and differential thermal analysis. The mechanical stability of the crystal was analyzed using Vickers hardness test. The dielectric study was carried out to find the of charge distribution within the ASDL crystal. Some electric field and solid-state parameters are calculated. Thus, properties of ASDL crystals may applicable for high-power lasers generation.



The authors J.K. and V.S. thank the UGC for providing the fund through BSR Scheme.

Supplementary material

10854_2019_1134_MOESM1_ESM.doc (676 kb)
Supplementary material 1 (DOC 676 KB)


  1. 1.
    M.S. Chorghade, K.A. Jauregui, S.V. Mhaskar, C. Scott, C.G. Yeh, Chem. Rev. 112, 673 (2012)CrossRefGoogle Scholar
  2. 2.
    S.S. Prasad, M.R. Sudarsanakumar, V.S. Dhanya, S. Suma, M.R.P. Kurup, J. Mol. Struct. 1167, 134 (2018)CrossRefGoogle Scholar
  3. 3.
    L.R. Mingabudinova, V.V. Vinogradov, V.A. Milichko, E. Hey-Hawkins, A.V. Vinogradov, Chem. Soc. Rev. 45, 5408 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Medishetty, J.K. Zarȩba, D. Mayer, M. Samoć, R.A. Fischer, Chem. Soc. Rev. 46, 4976 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Wang, T. Zhang, W. Lin, Chem. Rev. 112, 1084 (2012)CrossRefGoogle Scholar
  6. 6.
    O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511 (2002)CrossRefGoogle Scholar
  7. 7.
    H.S. Quah, W. Chen, M.K. Schreyer, H. Yang, M.W. Wong, W. Ji, J.J. Vittal, Nat. Commun. 6, 1 (2015)CrossRefGoogle Scholar
  8. 8.
    A.V. Vinogradov, V.A. Milichko, H. Zaake-Hertling, A. Aleksovska, S. Gruschinski, S. Schmorl, B. Kersting, E.M. Zolnhofer, J. Sutter, K. Meyer, P. Lönnecke, E. Hey-Hawkins, Dalton Trans. 45, 7244 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Okubo, Kobunshi Ronbunshu 66, 562 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Wang, D. Liu, W. Lin, J. Am. Chem. Soc. 135, 13222 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, L. Wei, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.J. Zeng, X. Zhu, Y. Lu, H. Zhang, Adv. Opt. Mater. 6, 1 (2018)Google Scholar
  12. 12.
    H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C. De Wu, X. Chen, B. Chen, G. Qian, Nat. Commun. 7, 1 (2016)Google Scholar
  13. 13.
    X. Jiang, S. Luo, L. Kang, P. Gong, H. Huang, S. Wang, Z. Lin, C. Chen, ACS Photonics 2, 1183 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Liang, L. Kang, Z. Lin, Y. Wu, Cryst. Growth Des. 17, 2254 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Wu, Z. Yang, S. Pan, Angew. Chem. Int. Ed. 55, 6713 (2016)CrossRefGoogle Scholar
  16. 16.
    L.K. Cheng, W.R. Bosenberg, C.L. Tang, Prog. Cryst. Growth Charact. 20, 9 (1990)CrossRefGoogle Scholar
  17. 17.
    H. Sheth, Int. J. Psychosoc. Rehabil. 20, 25 (2016)Google Scholar
  18. 18.
    D. Mei, J. Jiang, F. Liang, S. Zhang, Y. Wu, C. Sun, D. Xue, Z. Lin, J. Mater. Chem. C 6, 2684 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Abudurusuli, K. Wu, Y. Rouzhahong, Z. Yang, S. Pan, Inorg. Chem. Front. 5, 1415 (2018)CrossRefGoogle Scholar
  20. 20.
    J.W. Lekse, M.A. Moreau, K.L. McNerny, J. Yeon, P.S. Halasyamani, J.A. Aitken, Inorg. Chem. 48, 7516 (2009)CrossRefGoogle Scholar
  21. 21.
    J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, J.H. Zhang, J.A. Aitken, Chem. Mater. 26, 3045 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Mei, W. Yin, K. Feng, Z. Lin, L. Bai, J. Yao, Y. Wu, Inorg. Chem. 51, 1035 (2012)CrossRefGoogle Scholar
  23. 23.
    J.V. Manonmoni, G. Ramasamy, A.A. Prasad, S.P. Meenakshisundaram, M. Amutha, RSC Adv. 5, 46282 (2015)CrossRefGoogle Scholar
  24. 24.
    T.U. Devi, N. Lawrence, R.R. Babu, S. Selvanayagam, H. Stoeckli-Evans, K. Ramamurthi, Cryst. Growth Des. 9, 1370 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Fleck, L. Bohatý, Acta Crystallogr. C 60, 291 (2004)CrossRefGoogle Scholar
  26. 26.
    E.R. Williams, M.F. Bush, J. Oomens, R.J. Saykally, J. Am. Chem. Soc. 130, 6463 (2008)CrossRefGoogle Scholar
  27. 27.
    B. Maté, Y. Rodriguez-Lazcano, Ó. Gálvez, I. Tanarro, R. Escribano, Phys. Chem. Chem. Phys. 13, 12268 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K.K. Maurya, J. Philip, H. Soumya, P. Sreekanth, G. Bhagavannarayana, CrystEngComm 16, 9245 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, D. Mei, P. Gong, Z. Lin, J. Zhong, Y. Wu, RSC Adv. 7, 38044 (2017)CrossRefGoogle Scholar
  30. 30.
    I. Aramburu, J. Ortega, C.L. Folcia, J. Etxebarria, Appl. Phys. B 116, 211 (2014)CrossRefGoogle Scholar
  31. 31.
    A.M. Asiri, M. Karabacak, M. Kurt, K.A. Alamry, Spectrochim. Acta A 82, 444 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, S. Dhanuskodi, P. Ramasamy, J. Cryst. Growth 236, 407 (2002)CrossRefGoogle Scholar
  33. 33.
    G. Liu, J. Liu, X. Zheng, Y. Liu, D. Yuan, X. Zhang, Z. Gao, X. Tao, CrystEngComm 17, 2569 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Nageshwari, C.R.T. Kumari, G. Vinitha, M.P. Mohamed, S. Sudha, M.L. Caroline, J. Mol. Struct. 1155, 101 (2018)CrossRefGoogle Scholar
  35. 35.
    P. Asokan, S. Kalainathan, Phys. Chem. Chem. Phys. 121, 22384 (2017)CrossRefGoogle Scholar
  36. 36.
    N. Tyagi, N. Sinha, H. Yadav, B. Kumar, RSC Adv. 6, 24565 (2016)CrossRefGoogle Scholar
  37. 37.
    N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanichamy, P. Ramasamy, Cryst. Growth Des. 6, 2441 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Goma, C.M. Padma, C.K. Mahadevan, Mater. Lett. 60, 3701 (2006)CrossRefGoogle Scholar
  39. 39.
    P.V. Dhanaraj, N.P. Rajesh, Physica B 406, 12 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Meena, C.K. Mahadevan, Cryst. Res. Technol. 43, 166 (2008)CrossRefGoogle Scholar
  41. 41.
    B. Uma, K.S. Rajnikant, S. Murugesan, Krishnan, B.M. Boaz, Prog. Nat. Sci. Mater. Int. 24, 378 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vadivel Sasikala
    • 1
  • Jeyaperumal Kalyana Sundar
    • 1
    Email author
  • Muppudathi Anna Lakshmi
    • 2
  1. 1.Materials Science Laboratory, Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of PhysicsERK Arts and Science CollegeDharmapuriIndia

Personalised recommendations