Direct correlation between the band gap and dielectric loss in Hf doped BaTiO3

  • Aanchal Sati
  • Anil Kumar
  • Vikash Mishra
  • Kamal Warshi
  • Archna Sagdeo
  • Shahid Anwar
  • Rajesh Kumar
  • P. R. SagdeoEmail author


Effect of Hf doping at Ti site in BaTiO3 on the optical band gap (Eg), Urbach energy (Eu), dielectric constant (ε) and dielectric loss i.e. loss tangent (tanδ) have been investigated. It has been observed that with Hf doping, the value of Eg and Eu systematically increases whereas; the value of dielectric constant and dielectric loss systematically decreases. The decrease in the value of dielectric constant has been explained in terms of reduction in the tetragonality i.e. by c/a ratio. In the present investigation, it has been proposed that increase in the value of Eg and Eu, leads to decrease in the tunneling probability of electron from valence band to the conduction band which may result in decrease in the value of the dielectric loss. Present investigations clearly suggest that the value of dielectric loss is effectively controlled by Eg. Thus, through present studies, a new methodology has been proposed for understanding the origin of dielectric loss. Moreover, a possible correlation between the Eg and tanδ in terms of tunneling probability has been provided.



Authors sincerely thank Dr. Adityanarayan H. Pandey for providing important references and Mr. Devesh Pathak for his help during SEM measurements. SIC IIT Indore is acknowledged for providing experimental facilities. We sincerely thank the Raja Ramanna Center for Advanced Technology (RRCAT) Indore for providing synchrotron radiation facilities. The authors sincerely thank Dr A. K. Sinha, Mr. M. N. Singh and Mr. Anuj Upadhyay for their help during X-ray diffraction measurements. Authors (AK, KW, VM) thank IIT Indore providing financial support through Teaching Assistantship. Ms. Aanchal Sati acknowledges IIT Indore for providing an opportunity to carry out research work through IIT Indore Ph.D. program and CSIR New Delhi for providing Junior Research fellowship through Grant No. 1061651837 for the above said Ph.D. program.


  1. 1.
    T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 140, 15252 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr. Mater. 65, 771 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Yamamoto, K. Urabe, H. Banno, Jpn. J. Appl. Phys. 32, 4272 (1993)CrossRefGoogle Scholar
  5. 5.
    K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Science 306, 1005 (2004)CrossRefGoogle Scholar
  6. 6.
    D. Rak, I. Ledoux, J.P. Huignard, Opt. Commun. 49, 302 (1984)CrossRefGoogle Scholar
  7. 7.
    V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Sagdeo, A. Nagwanshi, P. Pokhriyal, A.K. Sinha, P. Rajput, V. Mishra, P.R. Sagdeo, J. Appl. Phys. 123, 161424 (2018)CrossRefGoogle Scholar
  9. 9.
    G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S.W. Cheong, J. Phys. Chem. 97, 2368 (1993)CrossRefGoogle Scholar
  10. 10.
    J. Harada, T. Pedersen, Z. Barnea, Acta Crystallogr. A 26, 336 (1970)CrossRefGoogle Scholar
  11. 11.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys. Condens. Matter 18, 3455 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Yadav, S. Sharma, N.P. Lalla, Ceram. Int. 43, 13339 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Yabuta, H. Tanaka, T. Furuta, T. Watanabe, M. Kubota, T. Matsuda, T. Ifuku, Y. Yoneda, Sci. Rep. 7, 45842 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Deka, S. Ravi, A. Perumal, D. Pamu, Phys. B Condens. Matter 448, 204 (2014)CrossRefGoogle Scholar
  15. 15.
    D.M. Smyth, Annu. Rev. Mater. Sci. 15, 329 (1985)CrossRefGoogle Scholar
  16. 16.
    T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang, E. Takayama-Muromachi, Phys. Rev. Lett. 104, 147602 (2010)CrossRefGoogle Scholar
  17. 17.
    I.-K. Jeong, S. Lee, S.-Y. Jeong, C.J. Won, N. Hur, A. Llobet, Phys. Rev. B 84, 064125 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Kolodiazhnyi, Phys. Rev. B 78, 045107 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Hwang, T. Kolodiazhnyi, J. Yang, M. Couillard, Phys. Rev. B 82, 214109 (2010)CrossRefGoogle Scholar
  20. 20.
    V. Fritsch, J. Hemberger, M. Brando, A. Engelmayer, S. Horn, M. Klemm, G. Knebel, F. Lichtenberg, P. Mandal, F. Mayr, M. Nicklas, A. Loidl, Phys. Rev. B 64, 045113 (2001)CrossRefGoogle Scholar
  21. 21.
    S.K. Das, B.K. Roul, J. Mater. Sci. Mater. Electron. 26, 5833 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, Solid State Commun. 138, 331 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Anwar, P.R. Sagdeo, N.P. Lalla, Mater. Res. Bull. 43, 1761 (2008)CrossRefGoogle Scholar
  24. 24.
    H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, J. Alloys Compd. 431, 197 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, Y. Zhou, J. Ren, Q. Zheng, K.H. Lam, D. Lin, J. Eur. Ceram. Soc. 38, 557 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Zhao, W. Wu, H. Wang, J. Wu, J. Appl. Phys. 119, 024108 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Zhao, H. Wang, J. Xiong, J. Wu, Dalton Trans. 45, 6466 (2016)CrossRefGoogle Scholar
  28. 28.
    V. Tura, L. Mitoseriu, EPL Europhys. Lett. 50, 810 (2000)CrossRefGoogle Scholar
  29. 29.
    H.M. Rai, S.K. Saxena, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 054103 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2014)Google Scholar
  31. 31.
    J.F. Wager, AIP Adv. 7, 125321 (2017)CrossRefGoogle Scholar
  32. 32.
    P. Van Mieghem, Rev. Mod. Phys. 64, 755 (1992)CrossRefGoogle Scholar
  33. 33.
    H. Mohan Rai, S.K. Saxena, V. Mishra, A. Sagdeo, P. Rajput, R. Kumar, P.R. Sagdeo, J. Mater. Chem. C 4, 10876 (2016)CrossRefGoogle Scholar
  34. 34.
    H.M. Rai, R. Late, S.K. Saxena, V. Mishra, R. Kumar, P.R. Sagdeo, A. Sagdeo, Mater. Res. Express 2, 096105 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Appl. Phys. A 123, 576 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Singh, I. Choudhuri, H. Mohan Rai, V. Mishra, R. Kumar, B. Pathak, A. Sagdeo, P.R. Sagdeo, RSC Adv. 6, 100230 (2016)CrossRefGoogle Scholar
  37. 37.
    M.K. Warshi, V. Mishra, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Ceram. Int. 44, 8344 (2018)CrossRefGoogle Scholar
  38. 38.
    A. Kumar, M.K. Warshi, V. Mishra, A. Sati, S. Banik, A. Sagdeo, R. Kumar, P.R. Sagdeo, Ceram. Int. (2019). Google Scholar
  39. 39.
    Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004)CrossRefGoogle Scholar
  40. 40.
    K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989)CrossRefGoogle Scholar
  41. 41.
    M.H. Frey, Z. Xu, P. Han, D.A. Payne, Ferroelectrics 206, 337 (1998)CrossRefGoogle Scholar
  42. 42.
    J. Petzelt, Ferroelectrics 400, 117 (2010)CrossRefGoogle Scholar
  43. 43.
    R. Late, H.M. Rai, S.K. Saxena, R. Kumar, A. Sagdeo, P.R. Sagdeo, J. Mater. Sci. Mater. Electron. 27, 5878 (2016)CrossRefGoogle Scholar
  44. 44.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefGoogle Scholar
  45. 45.
    A.E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S.R. Barman, K. Maiti, D.D. Sarma, Y. Tokura, M. Onoda, Phys. Rev. B 53, 1161 (1996)CrossRefGoogle Scholar
  46. 46.
    M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B 52, 9248 (1995)CrossRefGoogle Scholar
  47. 47.
    V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kumar, P.R. Sagdeo, Mater. Sci. Semicond. Process. 86, 151 (2018)CrossRefGoogle Scholar
  48. 48.
    V. Mishra, A. Sati, M.K. Warshi, A.B. Phatangare, S. Dhole, V.N. Bhoraskar, H. Ghosh, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Mater. Res. Express 5, 036210 (2018)CrossRefGoogle Scholar
  49. 49.
    M.M. Vijatović, B.D. Stojanović, J.D. Bobić, T. Ramoska, P. Bowen, Ceram. Int. 36, 1817 (2010)CrossRefGoogle Scholar
  50. 50.
    B. Garbarz-Glos, K. Bormanis, D. Sitko, Ferroelectrics 417, 118 (2011)CrossRefGoogle Scholar
  51. 51.
    D.R. Penn, Phys. Rev. 128, 2093 (1962)CrossRefGoogle Scholar
  52. 52.
    H.M. Rai, S.K. Saxena, V. Mishra, M.K. Warshi, R. Kumar, P.R. Sagdeo, Adv. Mater. Process. Technol. 3, 539 (2017)Google Scholar
  53. 53.
    Y.H. Yu, S.C. Lee, C.S. Yang, C.K. Choi, W.K. Jung, J. Korean Phys. Soc. 42, 682 (2003)Google Scholar
  54. 54.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Limited, London, 1983)Google Scholar
  55. 55.
    P. Bräunlich (ed.), Thermally Stimulated Relaxation in Solids (Springer-Verlag, Berlin, 1979)Google Scholar
  56. 56.
    K. Noba, Y. Kayanuma, Phys. Rev. B 60, 4418 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Material Research Laboratory, Discipline of Physics and MEMSIndian Institute of Technology IndoreIndoreIndia
  2. 2.Synchrotron Utilization SectionRaja Ramanna Center for Advanced TechnologyIndoreIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia
  4. 4.CSIR- Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations