Enhanced photocatalytic performance of ZnFe2O4/BiOI hybrid for the degradation of methyl orange

  • Menghan Zhang
  • Xin Xie
  • Yushan Si
  • Jie Gao
  • Hongnan Du
  • Shuxin Pei
  • Xinyu Zhang
  • Qishe YanEmail author


The ZnFe2O4/BiOI hybrid photocatalysts were fabricated by the solvothermal method. The crystalline phase, morphologies composition and optical absorption property of the samples with different ZnFe2O4 contents were analyzed utilizing XRD, SEM, PL and UV–vis diffuse reflection spectrum, respectively. The photocatalytic activities of the as-prepared photocatalysts were evaluated by degrading methyl orange (MO) under visible light irradiation. Compared with pure BiOI and pure ZnFe2O4 catalyst, ZnFe2O4/BiOI hybrid photocatalysts could observably enhance photocatalytic activity and the 5% ZnFe2O4/BiOI composite performed the optimal degradation efficiency (81.2%) in 100 min. The kinetic studies indicated that the photo-degradation followed the first-order kinetic reaction model. Free radical trapping tests illustrated that ·O2 and h+ play the key roles in catalytic reaction. In consequence, the ZnFe2O4/BiOI composite can be widely used to treat organic pollutant in wastewater.



The authors are thankful to the institute of environmental sciences, Zhengzhou University.


  1. 1.
    Q. Zhu, N. Liu, N. Zhang, Y.Y. Song, M.S. Stanislaus, C.Y. Zhao, Y.H. Yang, J. Environ. Chem. Eng. 6(2), 2724 (2018)CrossRefGoogle Scholar
  2. 2.
    W. Zhang, H.L. Tay, S.S. Lim, Y.S. Wang, Z.Y. Zhong, R. Xu, Appl. Catal. B Environ. 95(1–2), 93 (2010)CrossRefGoogle Scholar
  3. 3.
    Y.N. Chen, G.Q. Zhu, M. Hojamberdiev, J.Z. Gao, R.L. Zhu, C.H. Wang, X.M. Wei, P. Liu, J. Hazard. Mater. 344, 42 (2018)CrossRefGoogle Scholar
  4. 4.
    P. Kharazi, R. Rahimi, M. Rabbani, Mater. Res. Bull. 103, 133 (2018)CrossRefGoogle Scholar
  5. 5.
    K. He, G.Q. Chen, G.M. Zeng, A.W. Chen, Z.Z. Huang, J.B. Shi, T.T. Huang, M. Peng, L. Hu, Appl. Catal. B Environ. 228, 19 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Appl. Surf. Sci. 364, 636 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Mahendiran, J.J. Mathen, M. Racik, J. Madhavan, M.V.A. Raj, J. Phys. Chem. Solids 126, 322 (2019)CrossRefGoogle Scholar
  8. 8.
    V. Katheresan, J. Kansedo, S.Y. Lau, J. Environ. Chem. Eng. 6(4), 4676 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Environ. Sci China. 65, 201 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Liu, Y.M. Cheng, X.F. Li, J.F. Dong, Appl. Surf. Sci. 439, 784 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Ayodhya, G. Veerabhadram, Mater. Today Energy. 9, 83 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Yan, Y.Q. Hua, F.F. Zhu, W. Gu, J.H. Jiang, H.Q. Shen, W.D. Shi, Appl. Catal. B Environ. 202, 518 (2017)CrossRefGoogle Scholar
  13. 13.
    Q.S. Yan, X. Xie, C.P. Lin, Y.L. Zhao, S.B. Wang, Y.G. Liu, J. Mater. Sci. Mater. Electron. 28(22), 16696 (2017)CrossRefGoogle Scholar
  14. 14.
    Z.P. Xing, J.Q. Zhang, J.Y. Cui, J.W. Yin, T.Y. Zhao, J.Y. Kuang, Z.Y. Xiu, N. Wan, W. Zhou, Appl. Catal. B Environ. 225, 452 (2018)CrossRefGoogle Scholar
  15. 15.
    S.E. Arasi, M.V.A. Raj, J. Madhavan, J. Mater. Sci. Mater. Electron. 29, 3170 (2017)CrossRefGoogle Scholar
  16. 16.
    T.T. Yang, J.M. Peng, Y. Zheng, X. He, Y.D. Hou, L. Wu, X.Z. Fu, Appl. Catal. B Environ. 221, 223 (2018)CrossRefGoogle Scholar
  17. 17.
    H.C. Lan, G. Zhang, H.W. Zhang, H.J. Liu, R.P. Liu, J.H. Qu, Catal. Commun. 98, 9 (2017)CrossRefGoogle Scholar
  18. 18.
    M.M. Xu, Y.L. Zhao, Q.S. Yan, Water. sci. Technol. 72(12), 2122 (2015)CrossRefGoogle Scholar
  19. 19.
    S.W. Gao, C.S. Guo, S. Hou, L. Wan, Q. Wang, J.P. Lv, Y. Zhang, J.F. Gao, W. Meng, J. Xu, J. Hazard. Mater. 331, 1 (2017)CrossRefGoogle Scholar
  20. 20.
    L.Y. Zhang, Q.S. Yan, Y.Y. Wang, R.Q. Zhang, Synth. React. Inorg. M 45, 1245 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Liu, W.R. Cao, Y. Su, Y. Wang, X.H. Wang, Appl. Catal. B Environ. 111–112, 271 (2012)CrossRefGoogle Scholar
  22. 22.
    X.W. Li, C.G. Niu, D.W. Huang, X.Y. Wang, X.G. Zhang, G.M. Zeng, Q.Y. Niu, Appl. Surf. Sci. 286, 40 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.Z. Hong, C.S. Li, Y.D. Meng, C.Y. Huang, W.D. Shi, Mater. Sci. Eng. B. 224, 69 (2017)CrossRefGoogle Scholar
  24. 24.
    X.C. Meng, Z.S. Zhang, J. Colloid. Interface Sci. 485, 296 (2017)CrossRefGoogle Scholar
  25. 25.
    L.Q. Jing, Y.G. Xu, C.C. Qin, J. Liu, S.Q. Huang, M.Q. He, H. Xu, H.M. Li, Mater. Res. Bull. 95, 607 (2017)CrossRefGoogle Scholar
  26. 26.
    S.K. Wu, X.P. Shen, G.X. Zhu, H. Zhou, Z.Y. Ji, K.M. Chen, A.H. Yuan, Appl. Catal. B Environ. 184, 328 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Chen, W. Ma, J.D. Dai, J. Zhao, C.X. Li, Y.S. Yan, J. Photochem. Photobiol. A. 328, 24 (2016)CrossRefGoogle Scholar
  28. 28.
    C.L. Wang, X. Tan, J.T. Yan, B. Chai, J.F. Li, S.Z. Chen, Appl. Surf. Sci. 396, 780 (2017)CrossRefGoogle Scholar
  29. 29.
    R.C. Sripriya, V.A.F. Samson, S. Anand, J. Madhavan, M.V.A. Raj, J. Mater. Sci. Mater. Electron. 29, 14084 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Huang, D.D. Zhu, Q. Zhang, Y.F. Zhang, J.J. Cao, Z.X. Shen, W.K. Ho, S.C. Lee, Appl. Catal. B-Environ. 234, 70 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Huang, Y.X. Gao, Q. Zhang, Y.F. Zhang, J.J. Cao, W.K. Ho, S.C. Lee, J. Hazard. Mater. 354, 54 (2018)CrossRefGoogle Scholar
  32. 32.
    Y.F. Jia, S.P. Li, J.Z. Gao, G.Q. Zhu, F.C. Zhang, X.J. Shi, Y. Huang, C.L. Liu, Appl. Catal. B-Environ. 240, 241 (2019)CrossRefGoogle Scholar
  33. 33.
    G.Q. Zhu, M. Hojamberdiev, S.L. Zhang, S.T.U. Din, W. Yang, Appl. Surf. Sci. 467, 968 (2019)CrossRefGoogle Scholar
  34. 34.
    Q.Z. Wang, T.J. Niu, L. Wang, C.X. Yan, J.W. Huang, J.J. He, H. She, B.T. Su, Y.P. Bi, Chem. Eng. J. 337, 506 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institution of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations