Investigating the electrical characteristics of a single electron transistor utilizing graphene nanoribbon as the island

  • Vahideh KhademhosseiniEmail author
  • Daryoosh Dideban
  • MohammadTaghi Ahmadi
  • Razali Ismail
  • Hadi Heidari


Single electron transistor (SET) is a fast device with promising features in nanotechnology. Its operation speed depends on the island material, so a carbon based material such as graphene nanoribbon (GNR) can be a suitable candidate for using in SET island. The GNR band gap which depends on its width, has a direct impact on the coulomb blockade and SET current. In this research, current–voltage characteristic for the SET utilizing GNR in its island is modelled. The comparison study shows the impact of GNR width and length on the SET current. Furthermore SET quantum capacitance is modeled and effect of GNR width and temperature on the quantum capacitance are investigated.



This research was supported by University of Kashan under supervision of Dr. Daryoosh Dideban. Authors are thankful to the support received for this work from Micoelectronics Lab (meLab) at the University of Glasgow, UK. Also thanks to the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment in which to simulate this research by Atomistix ToolKit and to complete this work.


  1. 1.
    H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nano mechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)CrossRefGoogle Scholar
  2. 2.
    V. KhademHosseini, D. Dideban, M.T. Ahmadi, R. Ismail, An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor. Int. J. Electron. Commun. (AEÜ) 90, 97–102 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Rinkoski, J.P. Sethna, H.D. Abruña, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)CrossRefGoogle Scholar
  4. 4.
    V. KhademHosseini, D. Dideban, M.T. Ahmadi, R. Ismail, Analysis of co-tunneling current in fullerene single-electron transistor. Braz. J. Phys. 48(4), 406–410 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Zheng, M. Asbahi, S. Mukherjee, C.J. Mathai, K. Gangopadhyay, J.K.W. Yang, S. Gangopadhyay, Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors. Nanotechnology. 26, 355204 (2015)CrossRefGoogle Scholar
  6. 6.
    V.K. Hosseini, M.T. Ahmadi, S. Afrang, R. Ismail, Analysis and simulation of coulomb blockade and coulomb diamonds in fullerene single electron transistors. Nano Electron. Optoelectron. 13, 138–143 (2018)CrossRefGoogle Scholar
  7. 7.
    V.K. Hosseini, M.T. Ahmadi, S. Afrang, R. Ismail, Analysis of Coulomb blockade in fullerene single electron transistor at room temperature. J. Nanoanal. 4(2), 120–125 (2017)Google Scholar
  8. 8.
    V. KhademHosseini, M.T. Ahmadi, R. Ismail, Analysis and modeling of fullerene single electron transistor based on quantum dot arrays at room temperature. J. Electron. Mater. 47(8), 4799–4806 (2018)CrossRefGoogle Scholar
  9. 9.
    C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, K. Ensslin, Tunable graphene single electron transistor. Nano Lett. 8(8), 2378–2383 (2008)CrossRefGoogle Scholar
  10. 10.
    S.J. Ray, First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications, Sens. Actuator B 222, 492–498 (2016)Google Scholar
  11. 11.
    S.J. Ray, M.V. Kamalakar, R. Chowdhury, Ab initio studies of phosphorene island single electron transistor. J. Phys. 28(19), 195302 (2016)Google Scholar
  12. 12.
    K.S. Novoselov, A.K. Geim, S. Morozov, Two dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)CrossRefGoogle Scholar
  13. 13.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  14. 14.
    J.P. Llinas, A. Fairbrother, G.B. Barin, W. Shi, K. Lee, S. Wu, B.Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K.M.F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel, J. Bokor, Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8(633), (2017)Google Scholar
  15. 15.
    J. Fang, S. Chen, W.G. Vandenberghe, M.V. Fischetti, Theoretical study of ballistic transport in silicon nanowire and graphene nanoribbon field-effect transistors using empirical pseudopotentials. IEEE Trans. Electron Devices 64(6), 2758–2764 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Li, D. Wu, X. Zhang, B. Zeng, M. Li, H. Duan, B. Yang, M. Long, The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes. Phys. Lett. A 382(21), 1401–1408 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Hur, D. Kim, Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors. Nanotechnology 29(18), 185202 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Li, K.Y. Yoon, X. Zhong, J. Wang, R. Zhang, J.R. Guest, J. Wen, X.Y. Zhu, G. Dong, A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nature Commun. 9, 1687 (2018)CrossRefGoogle Scholar
  19. 19.
    W. Wang, M. Zhou, X. Li, S. Li, X. Wu, W. Duan, L. He, Energy gaps of atomically precise armchair graphene sidewall nanoribbons. Phys. Rev. B 93, 241403 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)CrossRefGoogle Scholar
  21. 21.
    N. Merino-Díez, A.G. Lekue, E.C. Sanromà, J. Li, M. Corso, L. Colazzo, F. Sedona, D.S. Portal, J.I. Pascual, D.G. de Oteyza, Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on Au(111). ACS Nano, 11(11), 11661–11668 (2017)CrossRefGoogle Scholar
  22. 22.
    V. Khademhosseini, M.T. Ahmadi, S. Afrang, R. Ismail, Current analysis and modelling on fullerene single electron transistor at room temperature. J. Electron. Mater. 46(7), 4294–4298 (2017)CrossRefGoogle Scholar
  23. 23.
    C.N. Bondja, Z. Geng, R. Granzner, J. Pezoldt, F. Schwierz, Simulation of 50-nm gate graphene nanoribbon transistors. Electronics, 5(3), 1–17 (2016)Google Scholar
  24. 24.
    H. Raza, E.C. Kan, Armchair graphene nanoribbons: electronic structure and electric-field modulation, Phys. Rev. B 77, 245434 (2008)CrossRefGoogle Scholar
  25. 25.
    N. Ma, D. Jena, Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2, 015003 (2015)CrossRefGoogle Scholar
  26. 26.
    G.S. Kliros, A Phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices. Rom. J. Inf. Sci. Technol. 11 (2011)Google Scholar
  27. 27.
    V.K. Hosseini, D. Dideban, M.T. Ahmadi, R. Ismail, Analysis and modelling of quantum capacitance on graphene single electron transistor. Int. J. Mod. Phys. B 32(22), 1850235 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009)CrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of KashanKashanIran
  3. 3.Nano electronic Research Group, Physics Department, Nanotechnology Research CenterUrmia UniversityUrmiaIran
  4. 4.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  5. 5.Microelectronics Lab, Electronics and Nanoscale Engineering Research Division, School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations