Advertisement

Influence of Tin doping on the Sm123 superconducting ceramics

  • İbrahim KaracaEmail author
  • Şahin Ünlüer
Article
  • 6 Downloads

Abstract

We produced the samples that consist of the nominal composition as Sm1.46Ba1.54−xSnxCu3.2Oy (x = 0.35; 0.55; 0.75 and 0.95) by the melt growth method. We investigated Sn-dopant effects regarding differential scanning calorimetry, scanning electron microscope, X-ray powder diffraction and levitation force. The X-ray powder diffraction diagrams show many Sm211 phases in the Sn-doped samples. The lattice structures belong to the orthorhombic and tetragonal unit cells for the Sn-free and Sn-doped samples, respectively. We achieved the reduction of the grain size and the percentage of the orthorhombic phase with Sn doping. The SEM images of Sn-doped samples reveal to the reduction of the grain size. The reason of phase transformation is suspected to be related to the evolution of the c-lattice parameter. It is well-known that oxygen content also causes the phase transformation of the RE123. The a, b, and c-lattice parameters correspond to the unit cell closely matched to the well-known Sm123 values in the literature. The orthorhombic (123) phase in the matrix increases later, even if it makes smaller initially in terms of grain size. In this study, the reduction of the grain size confirms the increasing of tetragonal (211) phase in the matrix. This indicates that the (211) phase has been filtered in the matrix. Namely, the Sn-dopant effect induces the increase of Sm211 phase, in this way the phase transformation occurs in the matrix.

Notes

References

  1. 1.
    N. Balchev, E. Nazarova, K. Buchkov, K. Nenkov, J. Pirov, B. Kunev, J. Supercond. Nov. Magn. 27, 763 (2014)CrossRefGoogle Scholar
  2. 2.
    N. Balchev, K. Nenkov, G. Mihova, B. Kunev, J. Pirov, Physica C 467, 174 (2007)CrossRefGoogle Scholar
  3. 3.
    N.A. Khan, N. Hassan, M. Irfan, T. Firdous, Phys. B 405, 1541 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Koralay, S. Cavdar, A. Arslan, O. Ozturk, A.T. Tasci, N. Tugluoglu, Cryogenics 88, 17 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Dvurečenskij, A. Cigáň, I. van Driessche, M. Škrátek, M. Majerová, E. Bruneel, J. Maňka, Acta Phys. Pol. A 131, 1045 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Nariki, N. Sakai, M. Murakami, I. Hirabayashi, Physica C 412–414, 557 (2004)CrossRefGoogle Scholar
  7. 7.
    S.-J. Kim, H.-G. Kim, Physica C 338, 110 (2000)CrossRefGoogle Scholar
  8. 8.
    J.W. Cochrane, P.A. Miles, G.J. Russell, G. Foran, D.J. Cookson, Physica C 277, 213 (1997)CrossRefGoogle Scholar
  9. 9.
    T. Meignan, A. Banerjee, J. Fultz, P.J. McGinn, Physica C 281, 109 (1997)CrossRefGoogle Scholar
  10. 10.
    M.P. Delamare, I. Monot, J. Wang, J. Provost, G. Desgardin, Supercond. Sci. Technol. 9, 534 (1996)CrossRefGoogle Scholar
  11. 11.
    C.J. Kim, H.W. Park, K.B. Kim, G.W. Hong, Supercond. Sci. Technol. 8, 652 (1995)CrossRefGoogle Scholar
  12. 12.
    T. Saitoh, K. Kamata, K. Segawa, N. Sakai, S.I. Yoo, M. Murakami, Presented at International Symposium on Superconductivity VII, Kitakyushu, Japan (1994)Google Scholar
  13. 13.
    M. Yoshida, N. Ogawa, I. Hirabayashi, S. Tanaka, Physica C 2400, 185 (1991)Google Scholar
  14. 14.
    N. Ogawa, H. Yoshida, in Advanced Superconductivity IV, Proceeding of the International Symposium Superconductivity, ed. by H. Hayakawa, N. Koshizuka (ISTEC, Tokyo, Japan, 1991) p. 455Google Scholar
  15. 15.
    P. Diko, M. Sefcikova, K. Zmorayova, V. Antal, Int. J. Mater. Prod. Technol. 40(3–4) (2011)Google Scholar
  16. 16.
    J. Shinoyama, J. Kase, S. Kondoh, E. Yanagisawa, T. Tasubara, M. Suzuki, T. Morimoto, Jpn. J. Appl. Phys. 29, 1999 (1990)CrossRefGoogle Scholar
  17. 17.
    M.Y. Song, D.H. Lim, D.Y. Won, G.W. Hong, H.G. Lee, Supercond. Sci. Tech. 8, 20 (1995)CrossRefGoogle Scholar
  18. 18.
    N.V.N. Viswanath, T. Rajasekharan, Physica C 298, 173 (1998)CrossRefGoogle Scholar
  19. 19.
    F. Licci, P. Tissot, H.J. Scheel, J. Less Common Met. 150, 201 (1989)CrossRefGoogle Scholar
  20. 20.
    I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003)CrossRefGoogle Scholar
  21. 21.
    A.K.M. Alamgir, H. Yamada, N. Harada, K. Osaki, N. Tada, IEEE Trans. Appl. Supercond. 9, 1864 (1999)CrossRefGoogle Scholar
  22. 22.
    P. Diko, G. Krabbes, Supercond. Sci. Technol. 16, 90 (2003)CrossRefGoogle Scholar
  23. 23.
    P.K. Nayak, S. Ravi, J. Am. Ceram. Soc. 90, 2819 (2007)CrossRefGoogle Scholar
  24. 24.
    V. Vinila, R. Jacob, A. Mony, H. Nair, S. Issac, S. Rajan, A. Nair, J. Isac, Cryst. Struct. Theory Appl. 3, 1 (2014)Google Scholar
  25. 25.
    J. Unsworth, J. Du, B.J. Crosby, J.C. Macfarlane, IEEE Trans. Mag. 29, 1 (1993)CrossRefGoogle Scholar
  26. 26.
    D.H. Kang, H. Weh, IEEE Trans. Energy Convers. 19, 477 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Tripathi, T.K. Dey, Physica C 507, 1 (2014)CrossRefGoogle Scholar
  28. 28.
    I. Karaca, Chin. J. Phys. 5, 690 (2009)Google Scholar
  29. 29.
    F.C. Moon, Superconducting Levitation: Applications to Bearing and Magnetic Transportation (Wiley, New York, 2008)Google Scholar
  30. 30.
    W. Zhao, Y. Shi, M. Radušovská, A.R. Dennis, J.H. Durrell, P. Diko, D.A. Cardwell, Supercond. Sci. Technol. 29, 125002 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Iida, N. Hari Babu, Y. Shi, D.A. Cardwell, Supercond. Sci. Technol. 18, 1421 (2005)CrossRefGoogle Scholar
  32. 32.
    C.J. Kim, S.D. Park, H.W. Park, B.H. Jun, Supercond. Sci. Technol. 29, 1 (2016)Google Scholar
  33. 33.
    J.J. Wang, C.Y. He, L.F. Meng, C. Li, R.S. Han, Z.X. Gao, Supercond. Sci. Technol. 16 (2003)Google Scholar
  34. 34.
    E. Perini, G. Giunchi, M. Geri, A. Morandi, IEEE Trans. Appl. Supercond. 19 3 (2009)Google Scholar
  35. 35.
    S. Basaran, S. Sivrioglu, Indian J. Pure Appl. Phys. 55, 261 (2017)Google Scholar
  36. 36.
    I. Karaca, in Superconductors—Properties, Technology, and Applications, ed. by Y. Grigorashvili (IntechOpen, 2012) p. 307,  https://doi.org/10.5772/38131
  37. 37.
    D.A. Cardwell, Mater. Sci. Eng. B53, 1 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNiğde Ömer Halisdemir UniversityNiğdeTurkey
  2. 2.Bor Vocational SchoolNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations