Advertisement

Structural, spectral, thermal and nonlinear optical analysis of potassium tartrate hemihydrate crystal

  • N. Kalaimani
  • R. Aarthi
  • C. Ramachandra RajaEmail author
Article
  • 19 Downloads

Abstract

The semi-organic, non-linear optical (NLO) single crystals of potassium tartrate hemihydrate (PTH) were grown successfully by solvent evaporation method. It crystallizes in monoclinic crystal system. Functional group vibrations were analysed through FT-IR and FT–Raman spectroscopy. Molecular structure was established by NMR spectroscopy. PTH is transparent from 190 to 1100 nm. Thermal characteristics of PTH was analysed by TGA/DTA. SHG capability of PTH was tested by Kurtz–Perry method and the frequency doubling efficiency is measured as 0.9 times that of KDP. Third order nonlinear susceptibility (χ3) is found by Z scan method. Wide transmission bandwidth coupled with good thermal stability and favorable NLO properties of the crystal may be exploited to make photonic devices.

Notes

Acknowledgements

The authors thank the Sophisticated Analytical instruments Facility (SAIF), Indian Institute of Technology (IITM), Chennai for providing FT–Raman spectrum and single crystal XRD facility. We gratefully acknowledge the Instrumentation Centre of St. Joseph’s College, Trichy for recording UV–vis–NIR and FTIR spectra. The authors wish to thank Karunya Institute of Technology and Sciences, Coimbatore for powder XRD, Sastra University, Thanjavur for NMR Facility and CECRI, Karaikudi for TG/DTA analysis. The authors are also grateful to Professor P.K. Das, IISc, Bangalore for SHG test and Dr. G. Vinitha, VIT, Chennai for recording the Z-scan curves.

References

  1. 1.
    I. Ledoux, Synth. Met. 54, 123 (1993)CrossRefGoogle Scholar
  2. 2.
    D.R. Yuan, D. Xu, N. Zhang, M.G. Liu, M.H. Jiang, Chin. Phys. Lett. 13, 841 (1996)CrossRefGoogle Scholar
  3. 3.
    M. Iwai, T. Kobayashi, H. Furya, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 36, L276 (1997)CrossRefGoogle Scholar
  4. 4.
    P.R. Newman, L.F. Warren, P. Cunningham, T.Y. Chang, D.E. Cooper, G.L. Burdge, Mater. Res. Soc. Symp. Proc. 173, 173 (1990)Google Scholar
  5. 5.
    H.O. Marcy, L.F. Warren, M.S. Webb, C.A. Ebbers, S.P. Velsko, G.C. Kennedy et al., Appl. Opt. 31, 5051 (1992)CrossRefGoogle Scholar
  6. 6.
    U. Ramabadran, D.E. Zelmon, G.C. Kennedy, Appl. Phys. Lett. 60, 2589 (1992)CrossRefGoogle Scholar
  7. 7.
    M.H. Jiang, Q. Fang, Adv. Mater. 11, 1147 (1999)CrossRefGoogle Scholar
  8. 8.
    C.C. Desai, A.H. Patel, J. Mater. Sci. Lett. 6, 1066 (1987)CrossRefGoogle Scholar
  9. 9.
    J. Valasek, Phys. Rev. 17, 475 (1921)CrossRefGoogle Scholar
  10. 10.
    I.V. Veseleya, V.I. Gorodyski, Voprosy Onkol 3, 300 (1975)Google Scholar
  11. 11.
    S.K. Bachhav, N.S. Patil, M.S. Kale, D.S. Bhavsar, Int. J. Eng. Res. Appl. 4(8), 108 (2014)Google Scholar
  12. 12.
    R.M. Dabhi, M.J. Joshi, Indian J. Phys. 76A, 481 (2003)Google Scholar
  13. 13.
    K.C. Mevada, V.D. Patel, K.R. Patel, Arch. Phys. Res. 3(4), 258 (2012)Google Scholar
  14. 14.
    M.M. Abdel Kader, F. El-Kabbany, A. El-Shawarby, Phys. Status Solidi 127a, 121 (1991)CrossRefGoogle Scholar
  15. 15.
    N. Kalaimani, K. Ramya, R. Aarthi, C. Ramachandra Raja, Rasayan J. Chem. 11(3), 1263 (2018)CrossRefGoogle Scholar
  16. 16.
    R.C. Bott, D.S. Sagatys, G. Smith, K.A. Byriel, C.H.L. Kennard, Polyhedron 13(22), 3135 (1994)CrossRefGoogle Scholar
  17. 17.
    A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, Cryst. Res. Technol. 42, 1097 (2007)CrossRefGoogle Scholar
  18. 18.
    A.N. Vigneshwaran, A. Antony Joseph, C. Ramachandra Raja, Optik 127, 5365 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, X. Jiang, Z. Lin, Y. Wu, Crystals 7, 95 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Natarajan, G. Shanmugam, S.A. Martin Britto Dhas, Cryst. Res. Technol. 43, 561 (2008)CrossRefGoogle Scholar
  21. 21.
    L.D.S. Yadav, Organic Spectroscopy (Springer, Dordrecht, 2005), p. 122CrossRefGoogle Scholar
  22. 22.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic, New York, 1975)Google Scholar
  23. 23.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. (Wiley, New York, 1997)Google Scholar
  24. 24.
    R. Bhattacharjee, Y.S. Jain, H.D. Bist, J. Raman Spectrosc. 20, 91 (1989)CrossRefGoogle Scholar
  25. 25.
    E.Y. Ionashiro, F.J. Caires, A.B. Siqueira, L.S. Lima, C.T. Carvalho, J. Therm. Anal. Calorim. 108, 1183 (2012)CrossRefGoogle Scholar
  26. 26.
    K.V. Chernyakova, I.A. Vrublevsky, M.I. Ivanovskaya, D.A. Kotsikaub, ‎Appl. Spectrosc. 79, 76 (2012)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)CrossRefGoogle Scholar
  29. 29.
    C. Lei, Z. Yang, B. Zhang, M.-H. Lee, Q. Jing, Z. Chen, X.-C. Huang, Y. Wang, S. Pan, M.R.S.A. Janjua, Phys. Chem. 16, 20089 (2014)Google Scholar
  30. 30.
    H.-L. Fan, Q. Ren, X.-Q. Wang, T.-B. Li, J. Sun, G.-H. Zhang, D. Xu, G. Yu, Z.-H. Sun, Nat. Sci. 1, 136 (2009)Google Scholar
  31. 31.
    H. Nihei, A. Okamoto, Proc. SPIE 470, 4416 (2001)Google Scholar
  32. 32.
    G. Assanto, Z. Wang, D.J. Hagan, E.W. Vanstryland, Appl. Phys. Lett. 67(15), 2120 (1995)CrossRefGoogle Scholar
  33. 33.
    D.A. Mazurenko, R. Kerst, J.I. Dijkhuis, A.V. Akimov, V.G. Golubev, D.A. Kurdyukov, A.B. Pevtsov, A.V. Sel’kin, Phys. Rev. Lett. 91, 213903 (2003)CrossRefGoogle Scholar
  34. 34.
    A.C. Glatz, A. Finella, in Analytical Calorimetry, eds. R.S. Porter et al. (Springer, New York, 1974)Google Scholar
  35. 35.
    S.S. Gupte, A.O. Marcano, R.D. Pradhan, C.F. Desai, N. Melikechi, J. Appl. Phys. 89, 4939 (2001)CrossRefGoogle Scholar
  36. 36.
    Y.S. Zhou, E.B. Wang, J. Peng, Polyhedron 18, 1419 (1999)CrossRefGoogle Scholar
  37. 37.
    M. Rashidian, D. Dorranian, S. Ahmadi Darani, S. Saghafi, M. Ghoranneviss, Optik, 119 (2008) 1000Google Scholar
  38. 38.
    L.W. Tutt, T.F. Boggess, Prog. Quantum Electron. 17, 299 (1993)CrossRefGoogle Scholar
  39. 39.
    S. Kaladevi, C. Vijayan, M.P. Kothiyal, Opt. Mater. 27, 1606 (2004)Google Scholar
  40. 40.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. VanStryland, IEEE J. Quantum Electron. 26, 760 (1990)CrossRefGoogle Scholar
  41. 41.
    F.Z. Henari, S. MacNamara, O. Stevenson, J. Callagham, D. Weldon, W.J. Blau, Adv. Mater. 5, 930 (1993)CrossRefGoogle Scholar
  42. 42.
    M. Sukumar, R. Ramesh Babu, K. Ramamurthi, Solid State Sci. 12, 8 (2012)Google Scholar
  43. 43.
    A. Subashini, R. Kumaravel, S. Leela, H.S. Evans, D. Sastikumar, K. Ramamurthi, Spectrochim. Acta A 78, 935 (2011)CrossRefGoogle Scholar
  44. 44.
    A.N. Vigneshwaran, P. Paramasivam, C. Ramachandra Raja, Mater. Lett. 78, 100 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThiru.Vi.Ka Government Arts CollegeThiruvarurIndia
  2. 2.Government Arts College (Autonomous)KumbakonamIndia

Personalised recommendations