Facile synthesis of controllable carbonate-doped TiO2 microspheres for visible light photocatalytic applications

  • Bingkun LiuEmail author
  • Xiaole Han
  • Yajun Wu
  • Yongfei Xue
  • Hengzhen Shi


Mesoporous carbonate-doped TiO2 microspheres were prepared by a facile solvothermal route combining a low-temperature annealing process. XPS, TG, and FTIR analysis revealed the presence of carbonate species on TiO2 surface, which extended the optical absorption of the TiO2 microspheres to the visible region. The carbonate-doped T200 microspheres exhibited much higher photocatalytic degradation of MO activity compared with non-doped T400 microspheres under visible light illumination. By adjusting initial titanium precursor concentration and reaction time, the best photocatalytic performance of carbonate-doped T200 microspheres was obtained. In addition, carbonate-doped T200 microspheres also displayed good photocatalytic disinfection efficiency towards Escherichia coli under visible light exposure. Our study revealed that the carbonate-doped TiO2 microspheres would be applied in the water treatment for the degradation of organic pollutants and disinfection of bacteria.



The work is financially supported by the National Natural Science Foundation of China (No. 21571160), the National Natural Science Foundation of China-Henan Talents Fostering Joint Funds (No. U1504311), the Key Research Projects of the Science and Technology Department of Henan Province (Nos. 172102210544, 182102210153 and 182102210619), the Fundamental Research Funds for the Provincial Universities (No. 18KYYWF0109) and the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry (No. 2015BSJJ044).

Supplementary material

10854_2019_1115_MOESM1_ESM.docx (454 kb)
Supplementary material 1 (DOCX 453 KB)


  1. 1.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo, Appl. Catal. B 239, 408–424 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Nakata, A. Fujishima, J. Photochem, Photobiology C 13, 169–189 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Tang, L. Liu, Y. Li, Z. Bian, Appl. Catal. B 201, 41–47 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 38, 1849–1858 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 392, 658–686 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170, 560–569 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29, 1601694 (2017)CrossRefGoogle Scholar
  11. 11.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24–28 (2006)CrossRefGoogle Scholar
  12. 12.
    I. Hiroshi, W. Yuka, H. Kazuhito, Chem. Lett. 32, 772–773 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Appl. Catal. B 91, 355–361 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42, 4908–4911 (2003)CrossRefGoogle Scholar
  15. 15.
    B. Liu, L.-M. Liu, X.-F. Lang, H.-Y. Wang, X.W. Lou, E.S. Aydil, Energy Environ. Sci. 7, 2592–2597 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Liu, L. Han, N. An, L. Xing, H. Ma, L. Cheng, J. Yang, Q. Zhang, Appl. Catal. B 202, 642–652 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Yu, Y. Lin, J. Huang, S. Lin, D. Li, J. Am. Ceram. Soc. 100, 333–342 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Wang, Q. Zhou, Y. Xia, S. Zhan, Y. Li, Appl. Catal. B 225, 433–444 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Liu, X. Yan, X. Chen, L. Tian, Q. Xia, X. Chen, Catal. Today 264, 243–249 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, A.S. Ganeshraja, C. Jin, K. Zhu, J. Wang, J. Alloys Compd. 765, 551–559 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Liu, L. Mu, B. Han, J. Zhang, H. Shi, Appl. Surf. Sci. 396, 1596–1603 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Sayyar, A. Akbar Babaluo, J.R. Shahrouzi, Appl. Surf. Sci. 335, 1–10 (2015)CrossRefGoogle Scholar
  23. 23.
    S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail, K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, J. Hazard. Mater. 280, 723–733 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Ma, L. Han, H. Ma, J. Wang, J. Liu, L. Cheng, J. Yang, Q. Zhang, Catal. Commun. 95, 1–5 (2017)CrossRefGoogle Scholar
  25. 25.
    I. Corazzari, S. Livraghi, S. Ferrero, E. Giamello, B. Fubini, I. Fenoglio, J. Mater. Chem. 22, 19105–19112 (2012)CrossRefGoogle Scholar
  26. 26.
    D. Gu, Y. Lu, B. Yang, Y.-D. Hu, Chem. Commun. (2008). Google Scholar
  27. 27.
    B. Liu, Y. Xue, J. Zhang, B. Han, J. Zhang, X. Suo, L. Mu, H. Shi, Environ. Sci. 4, 255–264 (2017)Google Scholar
  28. 28.
    H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, J. Am. Chem. Soc. 136, 16716–16719 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Ma, Y. Chen, H. Li, X. Cui, Y. Lin, Mater. Res. Bull. 66, 51–58 (2015)CrossRefGoogle Scholar
  30. 30.
    B. Liu, X. Han, Y. Wang, X. Fan, Z. Wang, J. Zhang, H. Shi, J. Mater. Sci. Mater. Electron. 29, 14300–14310 (2018)CrossRefGoogle Scholar
  31. 31.
    H. Wang, Z. Wu, Y. Liu, J. Phys.Chem. C 113, 13317–13324 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bingkun Liu
    • 1
    Email author
  • Xiaole Han
    • 1
  • Yajun Wu
    • 1
  • Yongfei Xue
    • 1
  • Hengzhen Shi
    • 1
  1. 1.School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations