Polypyrrole nanostructures//activated carbon based electrode for energy storage applications

  • N. Sabari ArulEmail author
  • Jeong In HanEmail author


In this study, a self-assembled polypyrrole nanostructure with the high electrochemical performance was synthesized via a chemical polymerization method. The structure, morphology and compositional analysis were investigated using Fourier transmission infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). The FTIR analysis of the synthesized samples confirmed the presence of pyrrole chain located at 1313 cm−1. The XPS spectrum showed the presence of C1s and N1s binding energy peaks. The FESEM images confirmed the presence of self-assembled nanostructures with a size range of ~ 200 nm. The effect of various aqueous electrolytes on the electrochemical performance of polypyrrole was studied. Because of its smaller hydration sphere radius, increased molar conductivity and higher ionic mobility, self-assembled polypyrrole nanostructure (P1) delivered a high specific capacitance of 623 F g−1 in 0.5 M H2SO4 electrolyte. Finally, we have fabricated a solid-state symmetric (SSC) and asymmetric supercapacitor (ASC) based on polypyrrole electrode. Among them, the as-assembled P1//activated carbon-based ASC delivered a maximum energy density (25.3 Wh kg−1) and power density (2400 W kg−1) with excellent cycling stability after 40,000 charge/discharge cycles.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030456).


  1. 1.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    J.R. Miller, P. Simon, Science 321, 651–652 (2008)CrossRefGoogle Scholar
  3. 3.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326–1330 (2012)CrossRefGoogle Scholar
  4. 4.
    M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today 20, 425–451 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  6. 6.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  7. 7.
    Z.L. Wang, X.J. He, S.H. Ye, Y.X. Tong, G.R. Li, ACS Appl. Mater Inter. 6, 642–647 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Hepel, J. Electrochem Soc. 145, 124–134 (1998)CrossRefGoogle Scholar
  9. 9.
    J.S. Hong, M. Joo, R. Vittal, K.J. Kim, J. Electrochem Soc 149, E493–E496 (2002)CrossRefGoogle Scholar
  10. 10.
    R. Yuksel, E. Alpugan, H.E. Unalan, Org. Electron. 52, 272–280 (2018)CrossRefGoogle Scholar
  11. 11.
    R. Yuksel, N. Uysal, A. Aydinli, H.E. Unalan, J. Electrochem. Soc. 165, A283–A2890 (2018)CrossRefGoogle Scholar
  12. 12.
    A.H.P.D. Oliveira, H.P.D. Oliveira, J. Power Sources 268, 45–49 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao, W. Xu, Org. Electron. 24, 153–159 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Wu, M. Lian, J. Power Sources 362, 184–191 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Nano Lett. 14, 2522–2527 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.S. Lim, H.N. Lim, S.P. Lim, N.M. Huang, RSC Adv. 4, 56445–56454 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Zhou, H.J. Zhai, Org. Electron. 37, 197–206 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Qian, X. Zhou, C. Yu, S.S. Wu, J. Shen, J. Mater. Chem. A 1, 15230–15234 (2013)CrossRefGoogle Scholar
  19. 19.
    H.F. An, Y. Wang, X.Y. Wang, L.P. Zeng, X.Y. Wang, L.H. Yi, L. Bai, X.Y. Zhang, J. Power Sources 195, 6964–6969 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Lee, H. Jeong, R.L. Lavall, A. Busnaina, Y. Kim, Y.J. Jung, H. Lee, ACS Appl. Mater. Interfaces 9, 33203–33211 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2, 213–234 (2013)CrossRefGoogle Scholar
  22. 22.
    L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, Y.L. Wei, Electrochim. Acta 137, 26–33 (2014)CrossRefGoogle Scholar
  23. 23.
    N.S. Arul, J.I. Han, P.C. Chen, ChemElectroChem 5, 2747–2757 (2018)CrossRefGoogle Scholar
  24. 24.
    H.S. Abdullah, Intern. J. Phys. Sci. 7, 5468–5476 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Singh, Z. Salmi, P. Jha, N. Joshi, A. Kumar, P. Decorse, H. Lecoq, S.L. Truong, D.K. Aswal, S.K. Gupta, M.M. Chehimi, RSC Adv. 3, 13329–13336 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Chen, Y. Wang, J. Cao, Y. Liu, Y. Zhou, J.H. Ouyang, D. Jia, ACS Appl. Mater. Interfaces 9, 19831–19842 (2017)CrossRefGoogle Scholar
  27. 27.
    T.V. Vernitskaya, O.N. Efimov, Russ. Chem. Rev. 66, 443 (1997)CrossRefGoogle Scholar
  28. 28.
    B. Yue, C. Wang, X. Ding, G.G. Wallace, Electrochim. Acta 68, 18–24 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Zhao, J. Wu, B. Li, W. Du, Q. Huang, M. Zheng, H. Xue, H. Pang, Prog. Nat. Sci. Mater. Intern. 26, 237–242 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J. Su, J. Power Sources 216, 290–296 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Zhu, Y. Xu, J. Wang, J. Lin, X. Sun, S. Mao, Phys, Chem. Chem. Phys. 17, 28666–28673 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, Z. Chen, D. Zhang, Y. Zhao, P. Wu, F. Wang, Mater. Lett. 227, 158–160 (2018)CrossRefGoogle Scholar
  33. 33.
    D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, J. Mater. Chem. 22, 3044–3052 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Feng, W. Lv, J. Liu, J. Li, H. Yang, H. Xu, W. Yan, RSC Adv. 4, 40686–40692 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, J. Mater. Chem. A 2, 6086–6091 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Cao, Y. Wang, J. Chen, X. Li, F.C. Walsh, J.H. Ouyang, D. Jia, Y. Zhou, J. Mater. Chem. A 3, 14445–14457 (2015)CrossRefGoogle Scholar
  37. 37.
    N.S. Arul, L.S. Cavalcante, J.I. Han, J. Solid State Electrochem. 22, 303–313 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Huang, P. Chen, W. Lin, S. Lyu, G. Chen, X. Yin, W. Chen, RSC Adv. 6, 13359–13364 (2016)CrossRefGoogle Scholar
  39. 39.
    L.M. Santino, S. Acharya, J.M. D’Arcy, J. Mater. Chem. A 5, 11772–11780 (2017)CrossRefGoogle Scholar
  40. 40.
    E. Feng, G. Ma, H. Peng, F. Hua, W. Tamg, Z. Lei, New J. Chem. 41, 13347–13354 (2017)CrossRefGoogle Scholar
  41. 41.
    F.M. Guo, R.Q. Xu, X. Cui, L. Zhang, K.L. Wang, Y.W. Yao, J.Q. Wei, J. Mater. Chem. A 4, 9311–9318 (2016)CrossRefGoogle Scholar
  42. 42.
    Z. Hai Fu, W. Du, H. Zou, C. Li, Zhang, J. Mater. Chem. A 1, 14943–14950 (2013)CrossRefGoogle Scholar
  43. 43.
    Z. Xiangwen Yang, J. Lin, Y. Zheng, B. Huang, Chen, Yiyong Mai, Xinliang Feng, Nanoscale 8, 8650–8657 (2016)Google Scholar
  44. 44.
    J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, L. Wei, J. Power Sources 346, 120–127 (2017)CrossRefGoogle Scholar
  45. 45.
    Y. Dong, L. Xing, K. Chen, X. Wu, Nanomaterials 8, 487 (2018)CrossRefGoogle Scholar
  46. 46.
    L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. Hu, Y. Tong, J. Zhou, Z.L. Wang, ACS Nano 6, 656–661 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringDongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations