Effect of different pretreatment methods on sesame husk-based activated carbon for supercapacitors with aqueous and organic electrolytes

  • Xiaoxiao Qu
  • Yuhao Liu
  • Chuanxiang ZhangEmail author
  • Ahui Zhu
  • Tao Wang
  • Ye Tian
  • Jia Yu
  • Baolin Xing
  • Guangxu Huang
  • Yijun Cao


Sesame husks have been explored as a novel precursor to prepare high-performance activated carbons through two pretreatment processes coupled with KOH activation. The optimal structure of as-prepared carbon, which consisted of numerous micropores, well-defined mesopores, high specific surface of 2772 m2/g and large total pore volume of 1.206 cm3/g, is obtained via pre-carbonization and KOH activation. When applied in supercapacitors, the as-prepared carbon-based electrode achieves high specific capacitance of 301 F/g and 155 F/g in 6 M KOH aqueous electrolyte and 1 M Et4NBF4/PC organic electrolyte, respectively. Moreover, it also shows superior cycling stability of 94.9% and 92.5% capacitance retention after 10,000 cycles in KOH and Et4NBF4/PC electrolyte. Hence, this work makes the sesame husks act as a novel carbonaceous precursor and makes the pre-carbonization combined with KOH activation as an effective method for electrode materials in supercapacitor applications.



This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51404098, U1361119), International Science and Technology Cooperation Program of Henan (Grant No. 152102410047), Key Program of Science and Technology of the Education Department of Henan Province (Grant No. 14A440014), Natural Science Foundation of Henan (162300410115), Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (Grant No. 16IRTSTHN005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, Y. Ruan, D. Xia, Chempluschem 80, 181–187 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472–7477 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, Adv. Mater. 28, 3605–3605 (2016)CrossRefGoogle Scholar
  4. 4.
    T. Tooming, T. Thomberg, H. Kurig, A. Jänes, E. Lust, J. Power Sources 280, 667–677 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Zhu, K. Cheng, Y. Wang, D. Sun, L. Gan, T. Chen, J. Jiang, M. Liu, Electrochim. Acta 224, 17–24 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Nano Energy 11, 518–525 (2015)CrossRefGoogle Scholar
  7. 7.
    J.R. Miller, P. Simon, Sci. 321, 651 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  9. 9.
    N.C. Abeykoon, V. Garcia, R.A. Jayawickramage, W. Perera, J. Cure, Y.J. Chabal, K.J. Balkus, J.P. Ferraris, Rsc Adv. 7, 20947–20959 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Shivakumara, T.R. Penki, N. Munichandraiah, Mater. Lett. 131, 100–103 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Jain, S.K. Tripathi, Mater. Sci. Eng. B 183, 54–60 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Lu, C. Shen, Z. Zhang, E. Barrios, L. Zhai, ACS Appl. Mater. Interfaces 10, 4041–4049 (2018)CrossRefGoogle Scholar
  13. 13.
    K.L. Hong, L. Qie, R. Zeng, Z.Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.J. Fan, W.X. Zhang, J. Mater. Chem. A 2, 12733–12738 (2014)CrossRefGoogle Scholar
  14. 14.
    W. Wang, H. Quan, W. Gao, R. Zou, D. Chen, Y. Dong, L. Guo, RSC Adv. 7, 16678–16687 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Pang, B. Zou, X. Han, L. Cao, W. Wang, Y. Guo, Mater. Lett. 184, 88–91 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, R. Yang, M. Li, Z. Zhao, Ind. Crops Prod. 65, 216–226 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, J. Power Sources 302, 164–173 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Fan, P. Liu, B. Zhu, S. Chen, K. Yao, R. Han, Int. J. Hydrog. Energy 40, 6188–6196 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Mater. Chem. Phys. 80, 704–709 (2003)CrossRefGoogle Scholar
  20. 20.
    W. Kai, Z. Ning, S. Lei, Y. Rui, X. Tian, J. Wang, S. Yan, D. Xu, Q. Guo, L. Lang, Electrochim. Acta 166, 1–11 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Ruan, K. Ai, L. Lu, RSC Adv. 4, 30887–30895 (2014)CrossRefGoogle Scholar
  22. 22.
    C.L. Chyan, T.T. Lee, C.P. Liu, Y.C. Yang, J.T. Tzen, W.M. Chou, J. Agri. Chem. Soc. Japan. 69, 2319–2325 (2005)Google Scholar
  23. 23.
    E. Onsaard, P. Pomsamud, P. Audtum, Asian J. Food Agro Ind. 3, 420–431 (2010)Google Scholar
  24. 24.
    O.J. Brito, N. Núñez, J. Food Sci. 47, 457–460 (2010)CrossRefGoogle Scholar
  25. 25.
    D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Chem. Eng. J. 140, 32–42 (2008)CrossRefGoogle Scholar
  26. 26.
    F.C. Wu, P.H. Wu, T. Ruling, J. Rueyshin, J. Environ. Manage. 91, 1097–1102 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Deng, G.X. Li, H.B. Yang, J.P. Tang, J.Y. Tang, Chem. Eng. J. 163, 373–381 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Yorgun, N. Vural, H. Demiral, Microporous Mesoporous Mater. 122, 189–194 (2009)CrossRefGoogle Scholar
  29. 29.
    B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Mater. Chem. Phys. 124, 504–509 (2010)CrossRefGoogle Scholar
  30. 30.
    X. Gao, X. Wei, J. Zhou, G. Wang, S. Zhuo, Z. Liu, Q. Xue, Z. Yan, Electrochim. Acta 133, 459–466 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, Carbon 48, 3778–3787 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Ibarra, E. Muñoz, R. Moliner, Org. Geochem. 24, 725–735 (1996)CrossRefGoogle Scholar
  33. 33.
    X. Li, L. Kong, J. Yang, M. Gao, T. Hu, X. Wu, M. Li, App. Phys. A 113, 735–739 (2013)CrossRefGoogle Scholar
  34. 34.
    J.L. Zimmerman, R. Williams, V.N.K. And, J.L. Margrave, Nano Lett. 1, 731–734 (2008)CrossRefGoogle Scholar
  35. 35.
    C. Ma, Z. Li, J. Li, Q. Fan, L. Wu, J. Shi, Y. Song, App. Sur. Sci. 456, 568–576 (2018)CrossRefGoogle Scholar
  36. 36.
    G. Huang, W. Kang, B. Xing, L. Chen, C. Zhang, Fuel Proc. Tech. 142, 1–5 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Ko, C. Li, Polym. Compos. 16, 224–232 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Zhang, S. Han, C. Fan, L. Li, W. Zhang, J. Solid State Electrochem. 19, 715–721 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 22, 3634–3640 (2012)CrossRefGoogle Scholar
  40. 40.
    J.-T. Jin, X. Qiao, F. Cheng, H.-B. Fan, L.-F. Cui, Carbon 122, 114–121 (2017)CrossRefGoogle Scholar
  41. 41.
    K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Nano Energy 19, 373–381 (2016)CrossRefGoogle Scholar
  42. 42.
    Y.P. Wu, E. Rahm, R. Holze, Electrochim. Acta 47, 3491–3507 (2002)CrossRefGoogle Scholar
  43. 43.
    J.S. Lee, X. Wang, H. Luo, G.A. Baker, S. Dai, J. Am. Chem. Soc. 131, 4596 (2009)CrossRefGoogle Scholar
  44. 44.
    P.J. Peter, J. Zhang, D. Su, T. Arne, A. Markus, Adv. Mater. 22, 87–92 (2010)CrossRefGoogle Scholar
  45. 45.
    H. Chen, F. Sun, J. Wang, W. Li, W. Qiao, L. Ling, D. Long, J. Phys. Chem. C 117, 8318–8328 (2013)CrossRefGoogle Scholar
  46. 46.
    K.S. Kim, S.J. Park, Electrochim. Acta 56, 10130–10136 (2011)CrossRefGoogle Scholar
  47. 47.
    C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Béguin, Adv. Funct. Mater. 17, 1828–1836 (2007)CrossRefGoogle Scholar
  48. 48.
    A.C. Pastora, F. Rodríguez-Reinosoa, H. Marsha, M.A. Martínezb, Carbon 37, 1275–1283 (1999)CrossRefGoogle Scholar
  49. 49.
    X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sources 240, 109–113 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoxiao Qu
    • 1
    • 2
    • 3
  • Yuhao Liu
    • 1
  • Chuanxiang Zhang
    • 1
    • 2
    • 3
    Email author
  • Ahui Zhu
    • 1
  • Tao Wang
    • 1
  • Ye Tian
    • 1
  • Jia Yu
    • 4
  • Baolin Xing
    • 1
  • Guangxu Huang
    • 1
  • Yijun Cao
    • 5
  1. 1.College of Chemistry and Chemical EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.Coal Production Safety Collaborative Innovation Center in Henan ProvinceJiaozuoChina
  3. 3.Henan Key Laboratory of Coal Green ConversionJiaozuoChina
  4. 4.Hami Vocational &Technical CollegeHamiChina
  5. 5.Henan Province Industrial Technology Research Institute of Resources and MaterialsZhengzhou UniversityZhengzhouChina

Personalised recommendations