Advertisement

Nonlinear optical properties of irradiated 1,2-dihydroxyanthraquinone thin films: merged experimental and TD-DFT insights

  • A. S. Awed
  • M. I. A. Abdel MaksoudEmail author
  • M. M. Atta
  • Ramy Amer Fahim
Article
  • 17 Downloads

Abstract

Irradiating thin films via gamma rays is a facile method to tune their structural and optical properties. In the current study, thin films of Alizarin dye (AZ) are prepared via thermal evaporation technique. Subsequently, the AZ virgin films are irradiated by gamma rays (15–45 kGy). Fourier Transform Infrared spectroscopy (FTIR), the X-ray diffraction (XRD), and UV/Vis spectroscopy are employed to examine the induced changes in the functional groups, crystal structure and optical properties of AZ films. FTIR elucidates that the molecular structure of AZ films is independent of irradiation doses. XRD reveals that the mass density reduces with increasing the irradiation dose while the crystallite size increases. In regard to optical properties, while the refractive index of AZ films decreases with increasing the irradiation dose, the oscillating and dispersion energies increase. Further, the nonlinear optical susceptibility sharply decreases by increasing irradiation dose which gives a preference to the virgin AZ film in the optical applications over the irradiated ones.

Notes

Acknowledgements

The authors are thankful to Eng. Ahmed Adel Abd-Elhy owner of ABEX Company, Egypt, for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A.R. Eberle, M. Lerner, Separation and determination of scandium spectrophotometric method using alizarin red S. Anal. Chem. 27(10), 1551–1554 (1955)CrossRefGoogle Scholar
  2. 2.
    S. Natelson, R. Penniall, Colorimetric estimation of ultramicro quantities of calcium in human serum as complex with alizarin. Anal. Chem. 27(3), 434–437 (1955)CrossRefGoogle Scholar
  3. 3.
    Y.A. Rozin et al., Alizarin derivatives as inhibitors of calcium transport. Pharm. Chem. J. 30(8), 520–522 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Crossley, Certain metallic derivatives of hydroxy-anthraquinones. J. Am. Chem. Soc. 41(12), 2081–2083 (1919)CrossRefGoogle Scholar
  5. 5.
    Y. Kubo et al., Fluorescent alizarin–phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. J. Mater. Chem. 15(27–28), 2889–2895 (2005)CrossRefGoogle Scholar
  6. 6.
    C.A. Gregory et al., An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329(1), 77–84 (2004)CrossRefGoogle Scholar
  7. 7.
    O.R. Green, A Manual of Practical Laboratory and Field Techniques in Palaeobiology (Springer Science & Business Media, Berlin, 2013)Google Scholar
  8. 8.
    L. Wu, W. Forsling, A. Holmgren, Surface complexation of calcium minerals in aqueous solution. J. Coll. Interface Sci. 224(2), 211–218 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Guilhem, Sur la structure de l’alizarine. Acta Crystallogr. A 14(1), 88–89 (1961)CrossRefGoogle Scholar
  10. 10.
    J. Guilhem, Détermination par la diffraction des rayons X, de la structure cristalline des deux dihydroxyanthraquinones, l’anthrarufine et l’alizarine. 1967, Faculté des sciences de ParisGoogle Scholar
  11. 11.
    M.K. Cyrański et al., On two alizarin polymorphs. CrystEngComm 14(10), 3667–3676 (2012)CrossRefGoogle Scholar
  12. 12.
    R.o. Sánchez-de-Armas et al., Real-time TD-DFT simulations in dye sensitized solar cells: the electronic absorption spectrum of Alizarin supported on TiO2 nanoclusters. J. Chem. Theory Comput. 6(9), 2856–2865 (2010)CrossRefGoogle Scholar
  13. 13.
    M. El-Nahass et al., Effect of γ-irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films. Radiat. Phys. Chem. 139, 173–178 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Zeyada, M. El-Nahass, M. El-Shabaan, Gamma-ray irradiation induced structural and optical constants changes of thermally evaporated neutral red thin films. J. Mater. Sci. 47(1), 493–502 (2012)CrossRefGoogle Scholar
  15. 15.
    A. El-ghandour et al., 1, 2-Dihydroxyanthraquinone: synthesis, and induced changes in the structural and optical properties of the nanostructured thin films due to γ-irradiation. Spectrochim. Acta Part A, 206, 466–473 (2018)Google Scholar
  16. 16.
    A.A. Reheem, M.A. Maksoud, A. Ashour, Surface modification and metallization of polycarbonate using low energy ion beam. Radiat. Phys. Chem. 125, 171–175 (2016)CrossRefGoogle Scholar
  17. 17.
    M. El-Nahass et al., Structural investigation, thermal analysis and AC conduction mechanism of thermally evaporated alizarin red S thin films. Optik, 170, 304–313 (2018)CrossRefGoogle Scholar
  18. 18.
    M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. Mater. Electron. (2019).  https://doi.org/10.1007/s10854-019-00785-4 Google Scholar
  19. 19.
    A. El-Ghandour et al., Optical and electrical properties of nanostructured N, N′-diphenyl-N, N′-di-p-tolylbenzene-1, 4-diamine organic thin films. Appl. Phys. A 124(8), 543 (2018)CrossRefGoogle Scholar
  20. 20.
    A. El-ghandour et al., Correlation between induced changes in the structural properties of nanostructured boron subphthalocyanine chloride thin films and their linear and nonlinear optical properties. Opt. Laser Technol. 112, 126–133 (2019)CrossRefGoogle Scholar
  21. 21.
    A. Awed et al., Linear and nonlinear optical properties of alizarin red S thin films. Indian J. Phys. (2019).  https://doi.org/10.1007/s12648-018-01359-6 Google Scholar
  22. 22.
    H. Zeyada et al., Annealing temperatures induced optical constant variations of methyl violet 2B thin films manufactured by the spin coating technique. J. Non-Cryst. Solids 358(3), 625–636 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Sell, H. Casey Jr., K. Wecht, Concentration dependence of the refractive index for n-and p-type GaAs between 1.2 and 1.8 eV. J. Appl. Phys. 45(6), 2650–2657 (1974)CrossRefGoogle Scholar
  24. 24.
    N. El-Ghamaz, A. El-Sonbati, M. El-Mogazy, Effect of γ-radiation on the structural and optical properties of poly (3-allyl-5-[(4-nitrophenyl) diazenyl]-2-thioxothiazolidine-4-one) thin films. J. Mol. Liq. 248, 556–563 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Singh, Optical Properties of Condensed Matter and Applications, Vol. 6 (John Wiley & Sons, Hoboken, 2006)CrossRefGoogle Scholar
  26. 26.
    W. Spitzer, H. Fan, Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106(5), 882 (1957)CrossRefGoogle Scholar
  27. 27.
    C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B, 2(6), 2045 (1970)CrossRefGoogle Scholar
  28. 28.
    Y.-R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, 1984), p. 575Google Scholar
  29. 29.
    H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)Google Scholar
  30. 30.
    D.R. Kanis et al., Nonlinear optical characteristics of novel inorganic chromophores using the Zindo formalism. Chem. Mater. 3(1), 19–22 (1991)CrossRefGoogle Scholar
  31. 31.
    I. Saadeddin et al., Synthesis and characterization of single-and co-doped SnO2 thin films for optoelectronic applications. Appl. Surf. Sci. 253(12), 5240–5249 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Yamada et al., Temperature dependence of optical constants of La0.7Sr0.3MnO3 thin films. Appl. Surf. Sci. 421, 866–869 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Dresselhaus, Solid state physics Part II optical properties of solids (2001). http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf
  34. 34.
    K. Aly, F.M. Abdel-Rahim, Effect of Sn addition on the optical constants of Ge–Sb–S thin films based only on their measured reflectance spectra. J. Alloys Compd. 561, 284–290 (2013)CrossRefGoogle Scholar
  35. 35.
    C. Andraud et al., Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J. Am. Chem. Soc. 116(5), 2094–2102 (1994)CrossRefGoogle Scholar
  36. 36.
    M. Nakano et al., Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure—property relation in NLO responses of fractal antenna dendrimers. J. Am. Chem. Soc. 124(32), 9648–9655 (2002)CrossRefGoogle Scholar
  37. 37.
    V.M. Geskin, C. Lambert, J.-L. Brédas, Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J. Am. Chem. Soc. 125(50), 15651–15658 (2003)CrossRefGoogle Scholar
  38. 38.
    J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds. (Englewood Cliffs, Prentice Hall, 1965)Google Scholar
  39. 39.
    R.M. Silverstein et al., Spectrometric Identification of Organic Compounds (Wiley, Hoboken, 2014)Google Scholar
  40. 40.
    S. Ranjitha et al., Structural and spectral properties of 1, 2-dihydroxy-9, 10-anthraquinone dye sensitizer for solar cell applications. Acta Phys. Polonica, A., 126(3), 833–839 (2014)Google Scholar
  41. 41.
    L. Birks, H. Friedman, Particle size determination from X-ray line broadening. J. Appl. Phys. 17(8), 687–692 (1946)CrossRefGoogle Scholar
  42. 42.
    S. Madivalappa, V. Jali, Effects of gamma irradiation on polyvinylidene fluoride thin films. IOP Conf. Ser.: Mater. Sci. Eng. (2018).  https://doi.org/10.1088/1757-899X/310/1/012074 Google Scholar
  43. 43.
    H.-L. Fan et al., Investigation on third-order optical nonlinearities of two organometallic Dmit2-complexes using Z-scan technique. Nat. Sci. 1(02), 136 (2009)Google Scholar
  44. 44.
    C.-F. Shu, Y.-K. Wang, Synthesis of nonlinear optical chromophores containing electron-excessive and-deficient heterocyclic bridges. The auxiliary donor–acceptor effects. J. Mater. Chem. 8(4), 833–835 (1998)CrossRefGoogle Scholar
  45. 45.
    P. Zhou et al., Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Express 13(5), 1508–1514 (2005)CrossRefGoogle Scholar
  46. 46.
    T. Li et al., Crystal structure, vibrational spectra, optical properties and density functional theory approach of a picrate salt based on substituted triphenylphosphinium. J. Mol. Struct. 1180, 163–169 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceDamietta UniversityDamiettaEgypt
  2. 2.Materials Science Laboratory, Radiation Physics DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  3. 3.Polymers Physics Laboratory, Radiation Physics DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  4. 4.Radiation Protection and Dosimetry DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt

Personalised recommendations