Electrochemical capacitive performance of free-standing polyindole film and effect of introducing alkyl chain connecting two indoles

  • Lie Zou
  • Xuemin Duan
  • Weiqiang Zhou
  • Hui Zhang
  • Shuai Chen
  • Jingdang Chai
  • Xing Liu
  • Liang Shen
  • Jingkun XuEmail author
  • Ge ZhangEmail author


Polyindole (PIn), combining the good properties of polypyrrole and poly(para-phenylene), has been gained significant attention. But the capacitive performances of PIn and its derivatives electropsynthesized in boron trifluoride diethyl etherate (BFEE) were unknown so far. So we first prepared the free-standing PIn film in BFEE and studied its capacitive property. The specific capacitance value of PIn could achieve 270.2 F g−1 at high current density of 10 A g−1. And the capacitance retained of PIn 84.06% after 3000 cycles. For further studying the effect of introducing alkyl chains on the electrochemical properties of PIn, poly1,3-di(1H-indol-1-yl)propane (P(IP-3)), poly1,6-di(1H-indol-1-yl)hexane (P(IH-6)), and poly1,12-di(1H-indol-1-yl)dodecane (P(ID-12)) bridged by alkyl chains with different lengths were electrosynthesized in BFEE. Through a series of experiments, we found that the specific capacitance performances of P(IP-3), P(IH-6), and P(ID-12) were poorer than PIn, indicating the introduction of alkyl chains altered the electrochemical properties of the π-conjugated backbone of PIn and lowered its the properties, which could be proved by scanning electron microscope.



We are grateful to the Innovation Driven “5511” Project of Jiangxi Province (Grant No. 20165BCB18016), the Natural Science Foundation of Jiangxi Province (Grant No. 20181BAB216011), Project of Jiangxi Educational Committee (Grant No. GJJ180633), Scientific Research Foundation for Doctors in Jiangxi Science and Technology Normal University (Grant No. 2017BSQD006) and Projects for Postgraduate Innovation in Jiangxi (Grant No. YC2018-X30).

Supplementary material

10854_2019_1104_MOESM1_ESM.docx (16.5 mb)
Supplementary material 1 (DOCX 16880 KB)


  1. 1.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977)CrossRefGoogle Scholar
  2. 2.
    H.J. Qin, M.X. Wan, B. Matthew, L.M. Dai, Macromolecules 34, 675 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Kertesz, C.H. Choi, S.J. Yang, Chem. Rev. 105, 3448 (2005)CrossRefGoogle Scholar
  4. 4.
    N. Lupshak, O. Aksimentyeva, Synth. Met. 119, 95 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Surya, D.W. Geoffrey, K. Serge, J. Polym. Sci. Part A: Polym. Chem. 41, 1867 (2003)CrossRefGoogle Scholar
  6. 6.
    C.P. Frick, A.L. DiRienzo, A.J. Hoyt, D.L. Safranski, M. Saed, E.J. Losty, C.M. Yakacki, J. Biomed. Mater. Res. Part A. 102, 3122 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Ahn, R.R. Patel, A.J. Hoyt, A.S.P. Lin, F.B. Torstrick, R.E. Guldberg, C.P. Frick, R.D. Carpenter, C.M. Yakacki, N.J. Willett, Acta Biomater. 72, 352 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. Naka, M. Fuchiwaki, K. Tanaka, Polym. Int. 59, 352 (2010)CrossRefGoogle Scholar
  9. 9.
    F.X. Gao, Z. Ning, X.D. Fang, M.M. Ma, ACS Appl. Mater. Inter. 9, 5692 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Genovese, K. Lian, Curr. Opin. Solid State Mater. Sci. 19, 126 (2015)CrossRefGoogle Scholar
  11. 11.
    J.K. Xu, G.M. Nie, S.S. Zhang, X.J. Han, J. Hou, S.Z. Pu, J. Polym. Sci. Part A: Polym. Chem. 43, 1444 (2005)CrossRefGoogle Scholar
  12. 12.
    Z.J. Cai, G. Yang, Synth. Met. 160, 1902 (2010)CrossRefGoogle Scholar
  13. 13.
    W.Q. Zhou, Y.K. Du, H.M. Zhang, J.K. Xu, P. Yang, Electrochim. Acta 55, 2911 (2010)CrossRefGoogle Scholar
  14. 14.
    P.S. Abthagir, R. Saraswathi, Org. Electron. 5, 299 (2004)CrossRefGoogle Scholar
  15. 15.
    Z.J. Cai, X.J. Shi, Y.N. Fan, J. Power Sources 227, 53 (2013)CrossRefGoogle Scholar
  16. 16.
    W.Q. Zhou, J.K. Xu, Polym. Rev. 57, 248 (2017)CrossRefGoogle Scholar
  17. 17.
    S.P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, J. Appl. Polym. Sci. 103, 595 (2007)CrossRefGoogle Scholar
  18. 18.
    G. Zhang, B.Y. Lu, Y.P. Wen, L.M. Lu, J.K. Xu, Sens. Actuators, B 171, 786 (2012)CrossRefGoogle Scholar
  19. 19.
    G. Zhang, Y.P. Wen, Y.Z. Li, J.K. Xu, C.Q. Guo, B.Y. Lu, D.H. Zhu, J. Fluoresc. 23, 1053 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Chem. Rev. 110, 4724 (2010)CrossRefGoogle Scholar
  21. 21.
    Z.J. Cai, X.J. Shi, R.H. Zhang, Mater. Lett. 92, 271 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Arjomandi, D. Nematollahi, A. Amani, J. Appl. Polym. Sci. 131, 40094 (2014)CrossRefGoogle Scholar
  23. 23.
    G.Q. Shi, C. Li, Y.Q. Liang, Adv. Mater. 11, 1145 (1999)CrossRefGoogle Scholar
  24. 24.
    H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6, 1185 (2013)CrossRefGoogle Scholar
  25. 25.
    J.K. Xu, Z.H. Wei, Y.K. Du, S.Z. Pu, Mater. Lett. 61, 2486 (2007)CrossRefGoogle Scholar
  26. 26.
    G. Ye, Q.J. Zhou, D.Q. Li, Y.X. Zuo, X.M. Duan, W.Q. Zhou, J.K. Xu, New J. Chem. 42, 4824 (2018)CrossRefGoogle Scholar
  27. 27.
    Y.J. Hu, D.F. Hu, S.L. Ming, X.M. Duan, F. Zhao, J. Hou, J.K. Xua, F.X. Jiang, Electrochim. Acta 189, 64 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Bloxham, C.J. Moody, A.M.Z. Slawin, Tetrahedron 58, 3709 (2002)CrossRefGoogle Scholar
  29. 29.
    W.W. Zhang, W.N. Zhang, Z.X. Xue, Y. Xue, N.N. Jian, K. Qu, H. Gu, S. Chen, J.K. Xu, Electrochim. Acta 278, 313 (2018)CrossRefGoogle Scholar
  30. 30.
    W.Q. Zhou, X.M. Ma, F.X. Jiang, D.H. Zhu, J.K. Xu, B.Y. Lu, C.C. Liu, Electrochim. Acta 138, 270 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Zhang, H. Zhang, J. Zhang, W.C. Ding, J.K. Xu, Y.P. Wen, Sens. Actuators, B 253, 224 (2017)CrossRefGoogle Scholar
  32. 32.
    X.M. Ma, D.H. Zhu, Y. He, D.Z. Mo, Q.J. Zhou, X.M. Duan, J.K. Xu, W.Q. Zhou, J. Hou, Synth. Met. 218, 56 (2016)CrossRefGoogle Scholar
  33. 33.
    G.M. Nie, Z.M. Bai, W.Y. Yu, J. Chen, Biomacromolecular 14, 834 (2013)CrossRefGoogle Scholar
  34. 34.
    G.T. Yue, J.H. Wu, Y.M. Xiao, J.M. Lin, M.L. Huang, L.Q. Fan, Y. Yao, Chin. Sci. Bull. 58, 559 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lie Zou
    • 1
  • Xuemin Duan
    • 1
  • Weiqiang Zhou
    • 2
  • Hui Zhang
    • 3
  • Shuai Chen
    • 1
  • Jingdang Chai
    • 1
  • Xing Liu
    • 2
  • Liang Shen
    • 2
  • Jingkun Xu
    • 2
    • 4
    Email author
  • Ge Zhang
    • 2
    Email author
  1. 1.School of PharmacyJiangxi Science & Technology Normal UniversityNanchangPeople’s Republic of China
  2. 2.School of Chemistry & Chemical EngineeringJiangxi Science & Technology Normal UniversityNanchangPeople’s Republic of China
  3. 3.National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  4. 4.College of Chemistry and Molecular EngineeringQingdao University of Science & TechnologyQingdaoPeople’s Republic of China

Personalised recommendations