Advertisement

Selective sensing property of triclinic WO3 nanosheets towards ultra-low concentration of acetone

  • Qianqian JiaEmail author
  • Huiming Ji
  • Xue Bai
Article
  • 8 Downloads

Abstract

Uniform triclinic and monoclinic tungsten oxide (WO3) nanosheets were synthesized by facile hydrothermal process and thermal annealing at 250 and 450 °C, respectively. Acetone-sensing properties of the as-synthesized WO3 nanosheets were investigated with the aim of disease diagnose and environment detection. Triclinic WO3 nanosheets exhibited superior acetone selective and sensing performances (response ~ 2.04 to 1 ppm of acetone at 230 °C) to that of monoclinic WO3 nanosheets (response ~ 1.37 to 1 ppm of acetone and negligible selectivity). The mechanisms of acetone selective and sensing properties of triclinic WO3 were discussed in detail. Photoluminescence results and surface structure study revealed that the triclinic WO3 nanosheets exhibited higher defect level and more unsaturated coordinated O atoms than monoclinic WO3 nanosheets on their surfaces. These defects and O atoms can act as chemical adsorption sites where acetone molecules could be adsorbed and react directly. Meanwhile, triclinic WO3 exhibit lower symmetry and larger extent of polarization in comparison with monoclinic WO3. The induced large dipole moment contributes to strong interaction at these chemisorption sites between triclinic WO3 nanosheets and acetone molecules with a larger dipole moment than the other tested gases.

Notes

References

  1. 1.
    W. Cao, Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Liu, F. Zhang, H. Li, T. Chen, Y. Wang, Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens. Actuators B 162, 259–268 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Sun, X. Zhou, C. Wang, K. Shimanoe, G. Lu, N. Yamazoe, Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J. Mater. Chem. A 2, 1302–1308 (2014)CrossRefGoogle Scholar
  4. 4.
    J.W. Yoon, J.K. Choi, J.H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuators B 161, 570–577 (2012)CrossRefGoogle Scholar
  5. 5.
    Z. Li, Y. Fan, J. Zhan, In2O3 nanofibers and nanoribbons: preparation by electrospinning and their formaldehyde gas-sensing properties. Eur. J. Inorg. Chem. 21, 3348–3353 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Yoo, S.A. Akbar, K.H. Sandhage, Nanocarving of titania (TiO2): a novel approach for fabricating chemical sensing platform. Ceram. Int. 30, 1121–1126 (2004)CrossRefGoogle Scholar
  7. 7.
    Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20, 4547–4551 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández-Ramírez, F. Peiro, A. Cornet, J.R. Morante, L.A. Solovyov, B. Tian, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv. Funct. Mater. 17, 1801–1806 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Kanda, T. Maekawa, Development of a WO3 thick-film-based sensor for the detection of VOC. Sens. Actuators B 108, 97–101 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Khadayate, J. Sali, P. Patil, Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 72, 1077–1081 (2007)CrossRefGoogle Scholar
  11. 11.
    H.G. Moon, Y.R. Choi, Y.S. Shim, K.I. Choi, J.H. Lee, J.S. Kim, S.J. Yoon, H.H. Park, C.Y. Kang, H.W. Jang, Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers. ACS Appl. Mater. Interfaces 5, 10591–10596 (2013)CrossRefGoogle Scholar
  12. 12.
    V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov, A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements Nano Lett. 7, 3182–3188 (2007)CrossRefGoogle Scholar
  13. 13.
    H.W. Ra, R. Khan, J.T. Kim, B.R. Kang, Y.H. Im, The effect of grain boundaries inside the individual ZnO nanowires in gas sensing. Nanotechnology 21, 085502 (2010)CrossRefGoogle Scholar
  14. 14.
    N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)CrossRefGoogle Scholar
  15. 15.
    X. Wang, S.S. Yee, W.P. Carey, Transition between neck-controlled and grainboundary-controlled sensitivity of metal-oxide gas sensors. Sens. Actuators B 25, 454–457 (1995)CrossRefGoogle Scholar
  16. 16.
    A. Tricoli, M. Righettoni, S.E. Pratsinis, Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions. Nanotechnology 20, 315502 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.S. Shim, H.G. Moon, L. Zhang, S.J. Yoon, Y.S. Yoon, C.Y. Kang, H.W. Jang, Au-decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 3, 10452–10459 (2013)CrossRefGoogle Scholar
  18. 18.
    G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology—function relationship of ZnO: polar planes, oxygen vacancies and activity. J. Phys. Chem. C 112, 11859–11864 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Wang, A. Teleki, S. Pratsinis, P. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Shin, S.J. Choi, D.Y. Youn, I.D. Kim, Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J. Eelectroceram. 29, 106–116 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens. Actuators B 153, 373–381 (2011)CrossRefGoogle Scholar
  22. 22.
    X.X. Zou, G.D. Li, P.P. Wang, J. Su, J. Zhao, L.J. Zhou, Y.N. Wang, J.S. Chen, A Precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. Dalton Trans. 41, 9773–9780 (2012)CrossRefGoogle Scholar
  23. 23.
    N.D. Hoa, S.A. El-Safty, Gas nanosensor design packages based on tungsten oxide: mesocages, hollow spheres, and nanowires. Nanotechnology 22, 485503 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Appl. Mater. Interfaces 4, 3797–3804 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRefGoogle Scholar
  26. 26.
    D.Y. Lu, J. Chen, H.J. Chen, L. Gong, S.Z. Deng, N.S. Xu, Raman study of thermochromic phase transition in tungsten trioxide nanowires. Appl. Phys. Lett. 90, 041919 (2007)CrossRefGoogle Scholar
  27. 27.
    A.D. Walkingshaw, N.A. Spaldin, E. Artacho, Density-functional study of charge doping in WO3. Phys. Rev. B 70, 165110 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Hidayat, A. Purwanto, W.N. Wang, K. Okuyama, Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Mater. Res. Bull. 45, 165–173 (2010)CrossRefGoogle Scholar
  30. 30.
    D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang, X. Li, R. Zhang, H. Lu, H. Xu, S. Guan, The enhanced alcohol-sensing response of ultrathin WO3 nanoplates. Nanotechnology 21, 035501 (2010)CrossRefGoogle Scholar
  31. 31.
    E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, J. Purans, Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content. Solid State Ionics 123, 67–74 (1999)CrossRefGoogle Scholar
  32. 32.
    V. Hariharan, M. Parthibavarman, C. Sekar, Synthesis of tungsten oxide (W18O49) nanosheets utilizing EDTA salt by microwave irradiation method. J. Alloys Compd. 509, 4788–4792 (2011)CrossRefGoogle Scholar
  33. 33.
    A.G.S. Filho, J.M. Filho, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao, U.U. Gomes, Phase transition in WO3 microcrystals obtained by sintering process. J. Raman Spectrosc. 32, 695–699 (2001)CrossRefGoogle Scholar
  34. 34.
    L. Zhou, Q. Ren, X. Zhou, J. Tang, Z. Chen, C. Yu, Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous Mesoporous Mater. 109, 248–257 (2008)CrossRefGoogle Scholar
  35. 35.
    A.G. Souza-Filho, V.N. Freire, J.M. Sasaki, J. Mendes Filho, J.F. Juliao, U.U. Gomes, Coexistence of triclinic and monoclinic phases in WO3 ceramics. J. Raman Spectrosc. 31, 451–454 (2000)CrossRefGoogle Scholar
  36. 36.
    A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni, G. Mariotto, X-ray diffraction, extended X-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1–x)WO3–y⋅xReO2 mixtures. J. Appl. Phys. 84, 5515–5524 (1998)CrossRefGoogle Scholar
  37. 37.
    E. Salje, Lattice dynamics of WO3. Acta Cryst. A 31, 360–363 (1975)CrossRefGoogle Scholar
  38. 38.
    G. Lu, X. Wang, J. Liu, S. Qiu, C. He, B. Li, W. Liu, One-pot synthesis and gas sensing properties of ZnO mesoporous architectures. Sens. Actuators B 184, 85–92 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Shouli, C. Liangyuan, Y. Pengcheng, L. Ruixian, C. Aifan, C.C. Liu, Sn/In/Ti nanocomposite sensor for CH4 detection. Sens. Actuators B 135, 1–6 (2008)CrossRefGoogle Scholar
  40. 40.
    G.A. Wijs, P.K. Boer, R.A. Groot, Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations. Phys. Rev. B 59, 2684–2693 (1999)CrossRefGoogle Scholar
  41. 41.
    J.A. Dean, Lange’s Handbook of Chemistry. (McGraw-Hill, New York, 1999), pp. 5.105–5.134Google Scholar
  42. 42.
    V. Oison, L. Saadi, C. Lambert-Mauriat, R. Hayn, Mechanism of CO and O3 sensing on WO3 surfaces: first principle study. Sens. Actuators B 160, 505–510 (2011)CrossRefGoogle Scholar
  43. 43.
    L. Zhao, F.H. Tian, X. Wang, W. Zhao, A. Fu, Y. Shen, S. Chen, S. Yu, Mechanism of CO adsorption on hexagonal WO3 (001) surface for gas sensing: a DFT study. Comput. Mater. Sci. 79, 691–697 (2013)CrossRefGoogle Scholar
  44. 44.
    C.Y. Su, H.C. Lin, Direct route to tungsten oxide nanorod bundles: microstructures and electro-optical properties. J. Phys. Chem. C 113, 4042–4046 (2009)CrossRefGoogle Scholar
  45. 45.
    S. Sun, X. Chang, Z. Li, Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires. Mater. Res. Bull. 45, 1075–1079 (2010)CrossRefGoogle Scholar
  46. 46.
    M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K. Choi, J.H. Lee, S.H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The 46th Research Institute of China Electronics Technology Group CorporationTianjinChina
  2. 2.Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations