Advertisement

Study of impedance, dielectric and magnetic properties in Y3Fe5−xMnxO12 (x = 0–0.2)

  • Aakansha
  • S. RaviEmail author
Article
  • 24 Downloads

Abstract

Manganese substituted yttrium iron garnet (Y3Fe5−xMnxO12 with x = 0, 0.1 and 0.2) were prepared by sol–gel route and they are all found to be in single-phase form with lattice constant in the range of a = 12.3724 Å for x = 0 to 12.3674 Å for x = 0.2. Impedance analysis shows that the relaxation process is predominantly controlled by grain boundaries. The relaxation time of charge carriers obtained from the impedance measurement follows the Arrhenius law with an anomaly in the vicinity of transition temperature and it highlights the presence of magneto-electric coupling. The dielectric constant at room temperature for 1 MHz frequency is found to be in the range of ε′ = 15 for x = 0 to ε′ = 10 for x = 0.2. Magnetization measurements show that all samples exhibit ferrimagnetic transition and its transition temperature Tc decreases from 550 K for x = 0 to 539 K for x = 0.2.

Notes

Acknowledgements

We acknowledge CIF, IIT Guwahati for extending the VSM facility.

References

  1. 1.
    P.K. Larsen, R. Metselaar, Phys. Rev. B 14, 2520 (1976)CrossRefGoogle Scholar
  2. 2.
    V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, J. Magn. Magn. Mater. 321, 2035 (2009)CrossRefGoogle Scholar
  3. 3.
    J.S. McCloy, B. Walsh, IEEE Trans. Magn. 49, 4253 (2013)CrossRefGoogle Scholar
  4. 4.
    E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, P.B.A. Fechine, Solid State Phenom. 202, 65 (2013)CrossRefGoogle Scholar
  5. 5.
    B.J.H. Stadler, T. Mizumoto, J. IEEE Photonics 6, 0600215 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30–36 (1957)CrossRefGoogle Scholar
  7. 7.
    M.A. Gilleo, S. Geller, Phys. Rev. 110, 73 (1958)CrossRefGoogle Scholar
  8. 8.
    Z. Cheng, H. Yang, L. Yu, W. Xu, J. Mater. Sci. Mater. Electron. 19, 442–447 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Praveena, S. Srinath, J. Magn. Magn. Mater. 349, 45 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Wu, F. Huang, T. Xu, R. Ti, X. Lu, Y. Kan, X. Lv, W. Zhu, J. Zhu, J. Appl. Phys. 117, 144101 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Zhao, J. Zhou, Y. Bai, Z. Gui, L. Li, J. Magn. Magn. Mater. 280, 208 (2004)CrossRefGoogle Scholar
  12. 12.
    T.C. Mao, J.C. Chen, J. Magn. Magn. Mater. 302, 74 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.J. Siao, X. Qi, C.R. Lin, J.C.A. Haung, J. Appl. Phys. 109(7), 07A508 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, J. Magn. Magn. Mater. 324, 3334 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Jiaqian, Y. Jian, J. Yulong, Q. Tai, J. Rare Earths 29, 562 (2011)CrossRefGoogle Scholar
  16. 16.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, Appl. Phys. Lett. 100, 052902 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, K. Ghose, J. Magn. Magn. Mater. 369, 14 (2014)CrossRefGoogle Scholar
  18. 18.
    R.P. Garcia, A. Delgado, Y. Guerra, G. Duarte, L.A.P. Goncalves, E.P. Hernandez, Mater. Res. Express 4, 016103 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Zhou, W. Cheng, F. Lin, X. Ma, W. Shi, Appl. Surf. Sci. 253, 2108 (2006)CrossRefGoogle Scholar
  20. 20.
    Y.M. Kang, S.H. Wee, S. Baik, S.G. Min, S.C. Yu, S.H. Moon, Y.W. Kim, S.I. Yoo, J. Appl. Phys. 97, 10A319 (2005)CrossRefGoogle Scholar
  21. 21.
    Y.J. Wu, Y. Gao, X.M. Chen, Appl. Phys. Lett. 91, 092912 (2007)CrossRefGoogle Scholar
  22. 22.
    Y.J. Siao, X. Qi, J. Alloys Compd. 691, 672 (2017)CrossRefGoogle Scholar
  23. 23.
    S.K. Patri, R.N.P. Choudhary, B.K. Samantaray, Solid State Commun. 144, 441 (2007)CrossRefGoogle Scholar
  24. 24.
    R.A. Young, The Rietveld Method. International Union of Crystallography (Oxford University Press, Oxford, 1993)Google Scholar
  25. 25.
    R.D. Shannon, Acta Cryst. A 32, 751 (1956)CrossRefGoogle Scholar
  26. 26.
    M.D. Abramoff. P.J. Magalhaes. S.J. Ram. Biophoton. Int. 11, 36–42 (2004)Google Scholar
  27. 27.
    E.A. Odo. Nanosci. Nanotechnol. 5, 57–63 (2015)Google Scholar
  28. 28.
    P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 79, 1793 (1996)CrossRefGoogle Scholar
  29. 29.
    R.K. Mishra, K.P. Dillip, R.N.P. Choudhary, A. Banerjee, J. Phys. Condens. Matter 20, 045218 (2008)CrossRefGoogle Scholar
  30. 30.
    S.R. Elliott, Solid State Ionics 70–71, 27–40 (1994)CrossRefGoogle Scholar
  31. 31.
    J. Wu, J. Wang, J. Am. Cerami. Soc. 93, 2795 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)CrossRefGoogle Scholar
  33. 33.
    G.G. Raju, Dielectrics in Electric Fields Chap. 4 (Marcel Dekker, New York, 2003)CrossRefGoogle Scholar
  34. 34.
    Aakansha, B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 10468–10477 (2017)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, IEEE Trans. Electr. Insul. 27, 3 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations