Composition effect of Co/Ni on the morphology and electrochemical properties of NH4Co1−xNixPO4·H2O nanocrystallites prepared by a facile hydrothermal method

  • Likkhasit Wannasen
  • Narong Chanlek
  • Santi Maensiri
  • Ekaphan SwatsitangEmail author


Co/Ni ammonium phosphate hydrates (NH4Co1−xNixPO4·H2O, where x = 0.00, 0.25, 0.50, 0.75, and 1.00) nanocrystallites were synthesized by a facile hydrothermal method. XRD results indicated an orthorhombic structure in all the obtained products within the space group, Pmn21. SEM images revealed a microsized morphology of quadrilateral-plates, platelets and flower-like particles in samples with x = 0.00, 0.25–0.75 and 1.00, respectively. The measured average diagonal size of NH4Co1−xNixPO4·H2O decreased from the largest value 14.08 µm in a sample with x = 0.00 to the smallest of 5.60 µm in a sample with x = 0.50. This is supported by BET results showing the largest specific surface area, 8.39 m2 g−1, and total pore volume, 0.069 cm3 g−1, in the x = 0.50 sample. A very dense and regular distribution with the largest specific surface area and total pore volumes of nanocrystalline NH4Co0.50Ni0.50PO4·H2O might be attributed to improvement of the electro-active sites in the electrode, resulting in an enhanced redox reaction. The electrochemical properties of the mesoporous NH4Co1−xNixPO4·H2O investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectrum (EIS) were performed with a three–electrode system in a 3 M KOH electrolyte. The results displayed the highest specific capacitance, 540 F g−1, at a current density of 0.5 A g−1 with a low charge transfer resistance of 0.72 Ω in a sample where x = 0.50. This was about 5 time higher than that of the NH4CoPO4·H2O (x = 0.00) sample. Furthermore, the capacitance retention of this sample was 84.5% after a 1000 cycle test at a current density of 5 A g−1.



This work was financially supported by the Nanotec–KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. The Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University is also acknowledged for their co-financial support. The authors express their appreciation to the Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand for the XPS measurements and analysis.


  1. 1.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  2. 2.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar
  3. 3.
    W. Chen, C. Xia, H.N. Alshareef, ACS Nano. 8, 9531–9541 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)CrossRefGoogle Scholar
  5. 5.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, Nat. Commun. 6, 10310 (2015)CrossRefGoogle Scholar
  7. 7.
    E. Frackowiak, F.B. Eguin, Carbon. 40, 1775–1787 (2002)CrossRefGoogle Scholar
  8. 8.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 14 (2006)CrossRefGoogle Scholar
  9. 9.
    I.H. Kim, K.B. Kim, J. Electrochem. Soc. 153, A383–A389 (2006)CrossRefGoogle Scholar
  10. 10.
    X.H. Yang, Y.G. Wang, H.M. Xiong, Y.O. Xia, Electrochimica Acta. 53, 752–757 (2007)CrossRefGoogle Scholar
  11. 11.
    C.C. Chen, C.Y. Chen, C.Y. Tsay, S.Y. Wang, C.K. Lin, J. Alloys Compd. 645, 250–258 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, M. Hao, Y. Wang, Y. Sha, L. Su, J. Solid State Electrochem. 20, 81–85 (2016)CrossRefGoogle Scholar
  13. 13.
    X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, RSC Adv. 2, 1835–1841 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, P. Wu, Chem. Eng. J. 347, 291–300 (2018)CrossRefGoogle Scholar
  15. 15.
    X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, N. Zhao, Appl. Surf. Sci. 441, 194–203 (2018)CrossRefGoogle Scholar
  16. 16.
    C.R. Debray, Acad. Sci. 59, 40 (1864)Google Scholar
  17. 17.
    J.E. Greedan, K. Reubenbauer, T. Birchall, M. Ehlert, D.R. Corbin, M.A. Subramanian, J. Solid State Chem. 77, 376–388 (1988)CrossRefGoogle Scholar
  18. 18.
    D. Visser, J. Appl. Phys. 69, 6016–6018 (1991)CrossRefGoogle Scholar
  19. 19.
    S. Neeraj, M.L. Noy, A.K. Cheetham, Solid State Sci. 4, 397–404 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Pujana, J.L. Pizarro, L. Lezama, A. Goni, J. Mater. Chem. 8, 1055–1060 (1998)CrossRefGoogle Scholar
  21. 21.
    C. Morgovan, I. Szabo, E. Marian, Rev. Chim. 61, 1258–1261 (2010)Google Scholar
  22. 22.
    V. Barron, J. Torrent, J. Agric. Food Chem. 42, 105–107 (1994)CrossRefGoogle Scholar
  23. 23.
    A. Yuan, J. Wu, L. Bai, S. Ma, Z. Huang, Z. Tong, J. Chem. Eng. Data 53, 1066–1070 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Liu, D. Hu, T. Huang, A. Yu, J. Alloys Compd. 518, 58–62 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Chen, W. Chen, J. Lu, D. Chu, Z. Hua, Q. Peng, Y. Li, Angew Chem Int Ed. 48, 4816–4819 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Wang, H. Pang, S. Zhao, W. Shao, N. Zhang, J. Zhang, J. Chena, S. Lia, RSC Adv. 4, 340–347 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Pang, Z.Z. Yan, W. Wang, J. Chen, J. Zhang, H. Zheng, Nanoscale 4, 5946–5953 (2012)CrossRefGoogle Scholar
  28. 28.
    X. Wang, Z. Yan, H. Pang, W. Wang, G. Li, Y. Ma, H. Zhang, X. Li, J. Chen, Int. J. Electrochem. Sci. 8, 3768–3785 (2013)Google Scholar
  29. 29.
    K. Raju, K.I. Ozoemena, Sci. Rep. 5, 17629 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Zeng, W. Wei, L. Zhang, CrystEngComm 14, 3008–3011 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Zhao, H. Pang, J. Deng, Y. Ma, B. Yan, X. Li, S. Li, J. Chena, W. Wanga, CrystEngComm. 15, 5950–5955 (2013)CrossRefGoogle Scholar
  32. 32.
    M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294–1301 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Manivasakan, P. Ramasamy, J. Kim, Nanoscale. 6, 9665–9672 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Prabeer, R. Nadir, C. Jean-Noel, D. Karim, W. Wesley, A. Michel, T. Jean-Marie, J. Mater. Chem. 20, 1659–1668 (2010)Google Scholar
  35. 35.
    G. Aintzane, J.L. Pizarro, L.M. Lezama, G.E. Barberis, M.I. Arriortuab, R. Teofilo, J. Mater. Chem. 6, 421–427 (1996)CrossRefGoogle Scholar
  36. 36.
    Z. Chen, Q. Chai, L. Liao, Y. He, Y. Li, X. Bo, W. Wu, B. Li, Thermochim. Acta. 543, 205–210 (2012)CrossRefGoogle Scholar
  37. 37.
    C. Morgovan, E. Marian, A. Iovi, I. Bratu, G. Borodi, Rev. Chim. 60, 1282–1284 (2009)Google Scholar
  38. 38.
    A. Goñi, J.L. Pizarro, L.M. Lezama, G.E. Barberis, M.I. Arriortua, T. Rojo, J. Mater. Chem. 6, 421–427 (1996)CrossRefGoogle Scholar
  39. 39.
    J. Gou, S. Xie, J. Mater. Sci. 30, 639–646 (2019)Google Scholar
  40. 40.
    C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 19, 5772–5777 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Liu, J. Chang, J. Sun, L. Gao, Electrochimica Acta. 107, 9–15 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang, S. Li, RSC Adv. 5, 39270–39277 (2015)CrossRefGoogle Scholar
  43. 43.
    C. Wei, C. Cheng, S. Wang, Y. Xu, J. Wang, H. Pang, Chem. Asian J. 10, 1731–1737 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Zhang, Y. Feng, Y. Zhang, L. Fang, W. Li, Q. Liu, K. Wu, Y. Wang, J. ChemSusChem. 7, 2000–2006 (2014)CrossRefGoogle Scholar
  45. 45.
    G. Zhang, S. Zang, X. Wang, ACS Catal. 5, 941–947 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Chang, N.E. Shi, S. Zhao, D. Xu, C. Liu, Y.J. Tang, Z. Dai, Y.Q. Lan, M. Han, J. Bao, ACS Appl. Mater. Interfaces 8, 22534–22544 (2016)CrossRefGoogle Scholar
  47. 47.
    X. Liu, J. Liu, X. Sun, J. Mater. Chem. A. 3, 13900–13905 (2015)CrossRefGoogle Scholar
  48. 48.
    E. Mesto, F. Scordari, M. Lacalamita, E. Schingaro, Am. Mineral. 97, 1460–1468 (2012)CrossRefGoogle Scholar
  49. 49.
    M.P. Umakant, V.G. Ravindra, S.N. Min, C.N. Archana, L. Sangrae, H. Haksoo, C.J. Seong, Sci. Rep. 6, 3549 (2016)Google Scholar
  50. 50.
    G. Hu, C. Tang, C. Li, H. Li, Y. Wang, H. Gong, J. Electrochem. Soc. 158, A695–A699 (2011)CrossRefGoogle Scholar
  51. 51.
    L. Hou, L. Lian, D. Li, J. Lin, G. Pan, L. Zhang, X. Zhang, Q. Zhang, C. Yuan, RSC Adv. 3, 21558–21562 (2013)CrossRefGoogle Scholar
  52. 52.
    G. Chen, S.L. Steven, B. Li, Y. Xu, D. Marco, S. Deng, H. Fan, H. Luo, J. Power Sources 251, 338–343 (2014)CrossRefGoogle Scholar
  53. 53.
    J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831–838 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5, 981–988 (2013)CrossRefGoogle Scholar
  55. 55.
    R. Liang, G. Wang, X. Huang, L. Zhu, S. Li, Y. Yan, B. Zhong, Mater. Lett. 158, 128–131 (2015)CrossRefGoogle Scholar
  56. 56.
    S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Limc, N.M. Huang, RSC Adv. 5, 14010 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Likkhasit Wannasen
    • 1
  • Narong Chanlek
    • 2
  • Santi Maensiri
    • 3
  • Ekaphan Swatsitang
    • 1
    • 4
    Email author
  1. 1.Department of Physics, Faculty of ScienceNanotec–KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen UniversityKhon KaenThailand
  2. 2.Synchrotron Light Research Institute (Public Organization)Nakhon RatchasimaThailand
  3. 3.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  4. 4.Institute of Nanomaterials Research and Innovation for Energy (IN-RIE)Khon Kaen UniversityKhon KaenThailand

Personalised recommendations