Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles

  • Bikram Singh
  • Sandeep AryaEmail author
  • Asha Sharma
  • Prerna Mahajan
  • Jyoti Gupta
  • Anoop Singh
  • Sonali Verma
  • Pankaj Bandhoria
  • Vishal Bharti


In this work, intrinsic and doped TiO2 nanoparticles with different Palladium (Pd) concentrations were successfully synthesized via solvothermal method. The structural, morphological and optical properties of the as-synthesized nanoparticles are investigated. Photodiode properties of the as-synthesized nanoparticles based spin coated films are also investigated. A p-n and p-i-n heterojunction structures are fabricated on ITO coated glass and studied for small (± 5 V) bias voltage. From the IV characterization, responsivity, sensitivity, external quantum efficiency and switch current ratio is evaluated for both the heterostructures. Results showed that the proposed p-i-n photodiode attain good stability and quick response as compared to the conventional p-n photodiode. Hall measurement confirmed that heavily Pd doped TiO2 nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.



This work was supported by the Science and Engineering Research Board (SERB), India (File No. EEQ/2016/000119).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M.J. Mayo, Synthesis and applications of nanocrystalline ceramics. Mater. Des. 14, 323–329 (1993)CrossRefGoogle Scholar
  2. 2.
    R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickama, R. Mariappan, Influence of Co concentration on the structural, optical, morphological and photo-diode properties of cerium oxide thin films. Ceram. Int. 42, 12715–12725 (2016)CrossRefGoogle Scholar
  3. 3.
    M.H. Bazargan, M. Malekshahi Byranvand, A. Nemati Kharat, Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells. Int. J. Mat. Res. 103, 347–351 (2012)CrossRefGoogle Scholar
  4. 4.
    Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie. 51, 2–24 (2012)CrossRefGoogle Scholar
  5. 5.
    R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. J. Coll. Int. Sci. 302, 530–536 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Andersson, L. Oesterlund, S. Ljungstroem, A. Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol A. J. Phys. Chem. B 106, 10674–10679 (2002)CrossRefGoogle Scholar
  7. 7.
    P.S. Shinde, C.H. Bhosale, Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. J. Anal. Appl. Pyrolysis 82, 83–88 (2008)CrossRefGoogle Scholar
  8. 8.
    W.H. Ryu, C.J. Park, H.S. Kwon, Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization. J. Nanosci. Nanotechnol. 8, 5467–5470 (2008)CrossRefGoogle Scholar
  9. 9.
    W. Tan, J. Chen, X. Zhou, J. Zhang, Y. Lin, X. Li, X. Xiao, Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J. Solid State Electrochem. 13, 651–656 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 61, 4559–4561 (2007)CrossRefGoogle Scholar
  11. 11.
    A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J. Am. Ceram. Soc. 88, 2639–2641 (2005)CrossRefGoogle Scholar
  12. 12.
    J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, 11125–11238 (2017)CrossRefGoogle Scholar
  13. 13.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  14. 14.
    R.M. Piticescu, R.R. Piticescu, D. Taloi, V. Badilita, Hydrothermal synthesis of ceramic nanomaterials for functional applications. Nanotechnol. 14, 312–317 (2003)CrossRefGoogle Scholar
  15. 15.
    P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale. 2, 45–59 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci. 26, 2139–2177 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)CrossRefGoogle Scholar
  18. 18.
    X. Wang, M. Fujimaki, K. Awazu, Photonic crystal structures in titanium dioxide (TiO2) and their optimal design. Opt. Express 13, 1486–1497 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Meacock, K.D.A. Taylor, M.J. Knowles, A. Himonides, The improved whitening of minced cod flesh using dispersed titanium dioxide. J. Sci. Food. Agric. 73, 221–225 (1997)CrossRefGoogle Scholar
  20. 20.
    H.M. Kim, T. Kokubo, F. Miyaji, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409–417 (1996)CrossRefGoogle Scholar
  21. 21.
    B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Acharya, B. Naik, K. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Sanjay, K. Deepa, J. Madhavan, S. Senthil, Performance of TiO2 based dye-sensitized solar cells fabricated with dye extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea as sensitizer. Mater. Lett. 219, 158–162 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Arya, P.K. Lehana, S.B. Rana, Synthesis of zinc oxide nanoparticles and their morphological, optical, and electrical characterizations. J. Electron. Mater. 46, 4604–4611 (2017)CrossRefGoogle Scholar
  25. 25.
    C.L. Yeh, S.H. Yeh, H.K. Ma, Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames. Powder Technol. 145, 1–9 (2004)CrossRefGoogle Scholar
  26. 26.
    A.N. Banerjee, N. Hamnabard, S.W. Joo, A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol-gel derived anatase TiO2 nanoparticles. Ceram. Int. 42, 12010–12026 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Arya, A. Sharma, B. Singh, M. Riyas, P. Bandhoria, M. Aatif, V. Gupta, Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode. Opt. Mater. 79, 115–119 (2018)CrossRefGoogle Scholar
  28. 28.
    E. Grabowska, M. Marchelek, T. Klimczuk, G. Trykowski, A.Z. Medynska, Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light. J. Mol. Catal. A: Chem. 423, 191–206 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Chekin, S. Bagheri, S.B.A. Hamid, Synthesis and spectroscopic characterization of palladium-doped titanium dioxide catalyst. Bull. Mater. Sci. 38, 461–465 (2015)CrossRefGoogle Scholar
  30. 30.
    J.C.S. Wu, C.H. Chen, A. Visible-Light, Response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol. A 163, 509–515 (2004)CrossRefGoogle Scholar
  31. 31.
    S. Arya, M. Riyas, A. Sharma, B. Singh, P. Prerna, S. Bandhoria, Khan, V. Bharti, Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route. Appl. Phys. A 124, 538 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Sakthivela, M.V. Shankarb, M. Palanichamyb, B. Arabindoob, D.W. Bahnemanna, V. Murugesanb, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38, 3001–3008 (2004)CrossRefGoogle Scholar
  33. 33.
    B.S. Kwak, J. Chae, J. Kim, M. Kang, Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull. Korean Chem. Soc. 30, 1047–1053 (2009)CrossRefGoogle Scholar
  34. 34.
    A.B. Yadav, A. Pandey, D. Somvanshi, S. Jit, Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si schottky ultraviolet photodiodes. IEEE Trans. Electron Devices 62, 1879–1884 (2015)CrossRefGoogle Scholar
  35. 35.
    V. Qaradaghi, I. Mejia, M.Q. Lopez, Fabrication and analysis of thin film CdTe/CdS based avalanche photodiodes. IEEE Electron Device Lett. 38, 489–492 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JammuJammuIndia
  2. 2.Department of PhysicsGovernment Gandhi Memorial Science CollegeJammuIndia
  3. 3.SKKU Advanced Institute of NanotechnologySungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations