Advertisement

Laser sintering mechanism and shear performance of Cu–Ag–Cu joints with mixed bimodal size Ag nanoparticles

  • Wei Liu
  • Yiping Wang
  • Zhen ZhengEmail author
  • Chunqing WangEmail author
  • Rong An
  • Yanhong Tian
  • Lingchao Kong
  • Ronglin Xu
Article
  • 34 Downloads

Abstract

In order to obtain Ag nanoparticles (NPs) sintered Cu–Cu joints with better mechanical properties in a relative short time and under a suitable pressure, a laser sintering process and a novel paste prepared by mixed Ag NPs (19 and 62 nm in diameters) were utilized and studied. The results indicated that joints with low porosities were fabricated within 15 s’ laser irradiation. By increasing laser power and sintering time, shear strength of the joints increased obviously. Shear strength of joints with 30% (mass ratio) 62 nm NPs was the highest and could reach 32 MPa when the samples were sintered at 60 W for 15 s under 5 MPa. The enhanced mechanical properties of the joints could be attributed to small NPs that could fill pores between larger NPs and improve initial packing density of the mixed particles. The results indicated that the mixed pastes had excellent potentials as alternative die-attach materials for high temperature power device applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51375003 and 51505104).

References

  1. 1.
    J.Y. Lee, X. Lu, Q. Lin, Appl. Phys. Lett. 106, 104 (2015)Google Scholar
  2. 2.
    M. Willander, M. Friesel, Q.U. Wahab, B. Straumal, J. Mater. Sci. Mater. Electron. 17, 1 (2006)CrossRefGoogle Scholar
  3. 3.
    Z. Huang, Y. Zhang, B. Zhao, F. Yang, J. Jiang, G. Deng, B. Li, H. Liang, Y. Chang, J. Song, J. Mater. Sci. Mater. Electron. 27, 1738 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Pareek, M. Sharma, S. Lal, J.K. Quamara, J. Mater. Sci. Mater. Electron. 29, 13043 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, W. Liu, C. Wang, J. Electron. Mater. 45, 267 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Wang, Y. Tian, C. Wang, C. Hang, J. Electrochem. Soc. 165, D328 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Wang, Y. Tian, C. Hang, C. Wang, Sci. Rep. 8, 5260 (2018)CrossRefGoogle Scholar
  8. 8.
    D.-Y. Shin, Y. Lee, C.H. Kim, Thin Solid Films 517, 6112 (2009)CrossRefGoogle Scholar
  9. 9.
    W. Guo, Z. Zeng, X. Zhang, P. Peng, S. Tang, J. Nanomater. 2015, (2015)Google Scholar
  10. 10.
    R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, D. Kim, Nanotechnology 19, (2008)Google Scholar
  12. 12.
    Y. Zuo, J. Shen, H. Xu, R. Gao, Mater. Lett. 199, 13 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Liu, Z. Zheng, C. Wang, W. Liu, R. An, W. Zhang, J. Mater. Sci. Mater. Electron. 28, 8206 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Liu, C. Wang, W. Liu, Z. Zheng, M. Li, J. Mater. Sci. Mater. Electron. 28, 5446 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, C. Wang, RSC Adv. 6, 91783 (2016)CrossRefGoogle Scholar
  16. 16.
    S.J. Kim, E.A. Stach, C.A. Handwerker, Appl. Phys. Lett. 96, (2010)Google Scholar
  17. 17.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005). (review 23)CrossRefGoogle Scholar
  18. 18.
    T.G. Lei, J.N. Calata, G. Lu, X. Chen, S. Luo, Integr. Power Syst. 33, 98. (CIPS), 2008 5th International Conference (2010)Google Scholar
  19. 19.
    M. Knoerr, A. Schletz, 6th International Conference Integrated Power Electronics System (CIPS’2010), March 16–18, 2010, Nurnberg, Ger. 16 (2010)Google Scholar
  20. 20.
    L.A. Navarro, X. Perpiña, M. Vellvehi, X. Jordà, Ing. Mecãnica Tecnol. y Desarro. 4, 97 (2012)Google Scholar
  21. 21.
    J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Fernandez-Robledo, J. Nekarda, A. Büchler, Sol. Energy Mater. Sol. Cells 161, 397–406 (2017)CrossRefGoogle Scholar
  23. 23.
    N. Yang, S. Li, X. Yuan, C. Liu, X. Ye, G. Liu, H. Li, J. Mater. Sci. Mater. Electron. 29, 8210 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Li, Y. Xiao, Z. Zhang, J. Yu, ACS Appl. Mater. Interfaces 7, 9157 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Nishioka, S. Hamabe, T. Murakami, T. Kitagawa, J. Appl. Polym. Sci. 69, 2133 (1998)CrossRefGoogle Scholar
  26. 26.
    X. Liu, W. Liu, C. Wang, Z. Zheng, J. Mater. Sci. Mater. Electron. 45, 5436 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Chen, R. Li, K. Qi, G.-Q. Lu, J. Electron. Mater. 37, 1574 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, Open Surf. Sci. J. 3, 70 (2010)CrossRefGoogle Scholar
  29. 29.
    Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, C.S. Tan, Appl. Phys. Lett. 108, 263103 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Wonisch, T. Kraft, M. Moseler, H. Riedel, J. Am. Ceram. Soc. 92, 1428 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of EducationHarbin Institute of TechnologyHarbinChina

Personalised recommendations