Advertisement

Conductive mechanism and the enhancement high-power electrical properties of Mn-modified Bi(Sc3/4In1/4)O3–PbTiO3–Pb(Mg1/3Nb2/3)O3 high temperature piezoelectric ceramics

  • Lei Wang
  • Tian-Long Zhao
  • Xianying DaiEmail author
  • Jianjun Song
  • Shuxiang DongEmail author
Article
  • 14 Downloads

Abstract

In this research, we report the improved high-power electrical properties and the conductive mechanism of the 0.40Bi(Sc3/4In1/4)O3–0.58PbTiO3–0.02Pb(Mg1/3Nb2/3)O3xMnO2 (BSI–PT–PMN–xMn, x = 0.0–0.8) system synthesized by a modified two-step solid state reaction method. A pure perovskite phase has been detected by the X-ray diffraction analysis of the BSI–PT–PMN–xMn ceramics, and the mechanical quality factor Qm has been found to increase from 28 to 210 with Mn content increasing from 0.0 to 0.8. The DC resistivity measurement indicated that the resistivity of the BSI–PT–PMN–xMn ceramics increases firstly, reaching the maximum at x = 0.4, and then decreases with more Mn modified. The conduction behavior can be described by the intrinsic charge carriers conduction mechanism and extrinsic semiconductor conductive mechanism in different temperature range. The high DC resistivity over 109 Ω cm at 300 °C together with the good electrical properties of piezoelectric constant d33 336 pC/N, planar electromechanical coupling factor kp 42.8%, mechanical quality factor Qm 120 and Curie temperature Tc 414 °C of the BSI–PT–PMN–0.4Mn ceramics makes it promising candidates for high temperature high-power piezoelectric applications.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Nos. XJS17026, JBX171106), the National Natural Science Foundations of China (Grant No. 51802242), and the 111 Project (No. B12026).

References

  1. 1.
    S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)CrossRefGoogle Scholar
  2. 2.
    O.O. Ivashchuk, A.V. Shchagin, A.S. Kubankin, I.S. Nikulin, A.N. Oleinik, V.S. Miroshnik, V.I. Volkov, Sci. Rep. 8, (2018)Google Scholar
  3. 3.
    J. Wu, X. Gao, J. Chen, C.-M. Wang, S. Zhang, S. Dong, Acta Phys. Sin. 67, (2018)Google Scholar
  4. 4.
    C. Fei, T. Zhao, J. Zhang, Y. Quan, D. Wang, X. Yang, Q. Chen, P. Lin, D. Li, Y. Yang, S. Dong, W. Ren, K.K. Shung, Q. Zhou, J. Alloys Compd. 743, 365 (2018)CrossRefGoogle Scholar
  5. 5.
    B. Jaffe, Piezoeletric ceramics (Academic Press, London, 1971)Google Scholar
  6. 6.
    R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299 (1994)CrossRefGoogle Scholar
  7. 7.
    Z. Gubinyi, C. Batur, A. Sayir, F. Dynys, J. Electroceram. 20, 95 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  9. 9.
    L.L. Fan, J. Chen, Q. Wang, J.X. Deng, R.B. Yu, X.R. Xing, Ceram. Int. 40, 7723 (2014)CrossRefGoogle Scholar
  10. 10.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)CrossRefGoogle Scholar
  11. 11.
    R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)CrossRefGoogle Scholar
  12. 12.
    Z. Hu, J. Chen, M. Li, X. Li, G. Liu, S. Dong, J. Appl. Phys. 110, 064102 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Yao, H. Liu, Y. Liu, Z. Wu, M. Cao, H. Hao, Appl. Phys. Lett. 92, 142905 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Chen, X. Tan, W. Jo, J. Rodel, J. Appl. Phys. 106, 034109 (2009)CrossRefGoogle Scholar
  15. 15.
    H.J. Kang, J. Chen, L.J. Liu, C.Z. Hu, L. Fang, X.R. Xing, Inorg. Chem. Commun. 31, 66 (2013)CrossRefGoogle Scholar
  16. 16.
    S.L. Jiang, Z.J. Zhu, L. Zhang, X. Xiong, J.Q. Yi, Y.K. Zeng, W. Liu, Q. Wang, K. Han, G.Z. Zhang, Mater. Sci. Eng. B 179, 36 (2014)CrossRefGoogle Scholar
  17. 17.
    L.D. Liu, R.Z. Zuo, Q. Sun, Q. Liang, J. Sol-Gel Sci. Technol. 65, 384 (2013)CrossRefGoogle Scholar
  18. 18.
    D.M. Stein, I. Grinberg, A.M. Rappe, P.K. Davies, J. Appl. Phys. 110, (2011)Google Scholar
  19. 19.
    Z.H. Yao, H.X. Liu, H. Hao, M.H. Cao, J. Appl. Phys. 109, 014105 (2011)CrossRefGoogle Scholar
  20. 20.
    T.L. Zhao, J. Chen, C.M. Wang, Y. Yu, S. Dong, J. Appl. Phys. 114, 027014 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Zhang, Y. Yu, J. Wu, X. Gao, C. Huang, S. Dong, J. Alloys Compd. 731, 1140 (2018)CrossRefGoogle Scholar
  22. 22.
    J.G. Chen, Y.J. Dong, J.R. Cheng, Ceram. Int. 41, 9828 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Meng, Q. Chen, H. Fu, H. Liu, J. Zhu, J. Mater. Sci.:Mater. Electron. 29, 12785 (2018)Google Scholar
  24. 24.
    T.-L. Zhao, C.-M. Wang, J. Chen, C.-L. Wang, S. Dong, J. Mater. Sci.:Mater. Electron. 27, 606 (2015)Google Scholar
  25. 25.
    Y. Lin, L. Zhang, J. Yu, J. Mater. Sci.:Mater. Electron. 27, 1955 (2016)Google Scholar
  26. 26.
    X. Qi, E. Sun, J. Wang, R. Zhang, Y. Bin, W. Cao, Ceram. Int. 42, 15332 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.X. Yan, Y.H. Xu, H.L. He, Y.J. Feng, Mater. Res. Innov. 19, 113 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Jianguo, H. Zhongqiang, S. Huaduo, L. Meiya, D. Shuxiang, J. Phys. D 45, 465303 (2012)CrossRefGoogle Scholar
  29. 29.
    Z.-P. Cao, C.-M. Wang, K. Lau, Q. Wang, Q.-W. Fu, H.-H. Tian, D.-F. Yin, Ceram. Int. 42, 11619 (2016)CrossRefGoogle Scholar
  30. 30.
    R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25, 925 (1969)CrossRefGoogle Scholar
  31. 31.
    T.-L. Zhao, C.-M. Wang, C.-L. Wang, Y.-M. Wang, S. Dong, Mater. Sci. Eng B 201, 51 (2015)CrossRefGoogle Scholar
  32. 32.
    Z.-Y. Shen, W.-Q. Luo, Y. Tang, S. Zhang, Y. Li, Ceram. Int. 42, 7868 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MicroelectronicsXidian UniversityXi’anChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations