Applying BaTiO3-coated TiO2 core–shell nanoparticles films as scaffold layers to optimize interfaces for better-performing perovskite solar cells

  • Jiejing Zhang
  • Xianwei Meng
  • Pengyu Su
  • Li Liu
  • Shuang Feng
  • Jun Wang
  • Tie Liu
  • Jiandong Yang
  • Haibin Yang
  • Wuyou FuEmail author


In this paper, we replaced mesoporous TiO2 nanoparticles scaffold layers by BaTiO3-coated TiO2 core–shell nanoparticles films which obtained by treating pure mesoporous TiO2 layers with 1.0 wt% barium nitrate solution, successfully realized the aim of optimizing interfaces bonding at TiO2/CH3NH3PbI3. Ultrathin BaTiO3 shell layer can combine better with CH3NH3PbI3 layer so as to reduce the existence of carrier recombination centers. Moreover, better optical absorption and larger fill factor were obtained in this manner by the reason of larger CH3NH3PbI3 grain size and fewer crystal boundaries. Furthermore, photoluminescence spectra and electrochemical impedance spectroscopy verified that our core–shell scaffold material contributes to accelerate carrier separation and retard carrier recombination. As a result, average power conversion efficiency enhanced from 11.20 to 13.76% under ambient conditions, which realized almost a quarter improvement than the devices based on pure mesoporous TiO2 layers. Such results have a certain guiding effect on solving interface defects and carrier recombination.



We are particularly grateful to the National Natural Science Foundation of China (Grant No. 51272086).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Supplementary material

10854_2019_1090_MOESM1_ESM.doc (12.5 mb)
Supplementary material 1 (DOC 12772 KB)


  1. 1.
    N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of renewable energy sources in future power systems: the role of storage. Renew. Energy 75, 14–20 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  4. 4.
    N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRefGoogle Scholar
  5. 5.
    H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  6. 6.
    J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)CrossRefGoogle Scholar
  7. 7.
    C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7, 2269–2275 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)CrossRefGoogle Scholar
  9. 9.
    C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)CrossRefGoogle Scholar
  10. 10.
    C. Wehrenfennig, E. Eperon Giles, B. Johnston Michael, J. Snaith Henry, M. Herz Laura. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2013)CrossRefGoogle Scholar
  11. 11.
    J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)Google Scholar
  15. 15.
    A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, Fast crystallization and improved stability of perovskite solar cells with zn2sno4 electron transporting layer: interface matters. ACS Appl. Mater. Interfaces 7, 28404–28411 (2015)CrossRefGoogle Scholar
  16. 16.
    J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Huang, X. Duan, Y. Zhang, X. Hu, L. Tan, Y. Chen, Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 155, 166–175 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Liu, K. Wang, C. Yi, X. Shi, W. Smith Adam, X. Gong, J. Heeger Alan, Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Adv. Funct. Mater. 26, 101–110 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Liu, H. Bala, B. Zhang, B. Zong, L. Huang, W. Fu, G. Sun, J. Cao, Z. Zhan, Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells. J. Alloys Compd. 736, 87–92 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Dualeh, N. Tétreault, T. Moehl, P. Gao, K. Nazeeruddin Mohammad, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, J. Song, Y.L. Zhao, L. Zhu, X.Q. Gu, Y.Q. Gu, M. Che, Y.H. Qiang, Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. J. Alloys Compd. 684, 84–90 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Hu, C. Wang, Y. Tang, L. Huang, J. Fu, W. Shi, L. Wang, W. Yang, Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. J. Alloys Compd. 679, 32–38 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Liu, L. Li, M. Chen, X. Ding, M. Wang, G. Liu, X. Wang, Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells. J. Alloys Compd. 697, 374–379 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2013)CrossRefGoogle Scholar
  25. 25.
    D.K. Hyung, H. Ohkita, H. Benten, S. Ito, Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater 28, 917–922 (2015)Google Scholar
  26. 26.
    W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)CrossRefGoogle Scholar
  27. 27.
    M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline batio3 nanoparticles. Chem. Mater. 20, 5381–5387 (2008)CrossRefGoogle Scholar
  28. 28.
    W.F. Zhang, Z. Yin, M.S. Zhang, Study of photoluminescence and electronic states in nanophase strontium titanate. Appl. Phys. A 70, 93–96 (2000)CrossRefGoogle Scholar
  29. 29.
    T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992)CrossRefGoogle Scholar
  30. 30.
    R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochima Acta 91, 30–35 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Fujisawa, T. Eda, M. Hanaya, Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 685, 23–26 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193 (2014)CrossRefGoogle Scholar
  33. 33.
    R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Hou, L. Pan, S. Huang, O.-Y. Wei, X. Chen, Enhanced efficiency and stability of perovskite solar cells using porous hierarchical tio2 nanostructures of scattered distribution as scaffold. Electrochima Acta 236, 351–358 (2017)CrossRefGoogle Scholar
  35. 35.
    W. Wu, H. Li, S. Liu, B. Zheng, Y. Xue, X. Liu, C. Gao, Tuning PbI2 layers by n-butanol additive for improving CH3NH3PbI3 light harvesters of perovskite solar cells. RSC Adv. 6, 89609–89613 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Cai, V.T. Tiong, T. Hreid, J. Bell, H. Wang, An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 3, 2784–2793 (2015)CrossRefGoogle Scholar
  37. 37.
    C. Sun, Y. Guo, B. Fang, L. Guan, H. Duan, Y. Chen, H. Li, H. Liu, Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet PbI2 precursor films. RSC Adv. 7, 22492–22500 (2017)CrossRefGoogle Scholar
  38. 38.
    Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014)CrossRefGoogle Scholar
  40. 40.
    V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PBX3 perovskite solar cells. Nano Lett. 14, 888–893 (2014)CrossRefGoogle Scholar
  41. 41.
    E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680–685 (2014)CrossRefGoogle Scholar
  42. 42.
    G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films 520, 2814–2818 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiejing Zhang
    • 1
  • Xianwei Meng
    • 1
  • Pengyu Su
    • 1
  • Li Liu
    • 1
  • Shuang Feng
    • 1
  • Jun Wang
    • 1
  • Tie Liu
    • 1
  • Jiandong Yang
    • 1
  • Haibin Yang
    • 1
  • Wuyou Fu
    • 1
    Email author
  1. 1.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations