Influence of thiourea on electroless Ni–P films deposited on silicon substrates

  • Wangping WuEmail author
  • Jianwen Liu
  • Naiming Miao
  • Jinjin Jiang
  • Yi ZhangEmail author
  • Lei Zhang
  • Ningyi Yuan
  • Qinqin Wang
  • Lixin Tang


Electroless nickel–phosphorus films were produced on silicon substrates in alkaline bath solutions, with the addition of thiourea in a concentration range of 1.0–5.0 mg L−1. The influence of thiourea on the chemical composition, morphology and corrosion resistance of the films was studied. The results revealed thiourea had a major influence on plating rate, phosphorus-content and aggregate size. The optimal content of thiourea was 1 mg L−1. Thiourea accelerated the deposition rate at low concentration of 1 mg L−1, but deceased the deposition rate and the phosphorus content at high concentration. The surface of the film without thiourea was smooth and dense. Also, with increasing thiourea content, the surface evolved into coarse nodular morphology with clear intercolonial boundaries. With the addition of 1 mg L−1 thiourea, the film had better corrosion resistance compared to film without thiourea.



This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 61604021; 51875053), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150260) and the Funding of Changzhou high technology research key laboratory of mould advanced manufacturing (Grant No. CM20173001).

Author contributions

WPW designed the study and supervised an MSc student, JWL, who performed most of the experiments, but did not contribute to the preparation of this article. NYY, LXT, and QQW supervised the preparation and pretreatment process of silicon wafers and discussed it. NMM guided the corrosion experiment, JJJ did this experiment. LZ conducted the SEM/EDS experiments and assisted in their data analysis. WPW, YZ, and LZ discussed the results. WPW wrote the manuscript. WPW and YZ revised the manuscript. All authors approved the submission of the final manuscript.

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.


  1. 1.
    H. Seto, K. Hashizume, T. Murata, J. Japan Inst. Electron. Pack. 1, 21 (2018)Google Scholar
  2. 2.
    W.P. Wu, J.J. Jiang, P. Jiang et al., Appl. Surf Sci. 307, 434 (2018)Google Scholar
  3. 3.
    W.P. Wu, Z.Z. Wang, P. Jiang et al., J. Electrochem. Soc. D 164(14), 985 (2017)CrossRefGoogle Scholar
  4. 4.
    W.P. Wu, Appl. Phys. A 1028–1036, 122 (2016)Google Scholar
  5. 5.
    W.P. Wu, Electrochemistry. 699, 84 (2016)Google Scholar
  6. 6.
    Y. Wang, H.P. Liu, S.F. Bi et al., RSC Adv. 9656, 6 (2016)Google Scholar
  7. 7.
    B.N. Hua, R.X. Sun, G. Yu et al., Surf. Coat. Technol. 84, 228 (2013)Google Scholar
  8. 8.
    I. Baskaran, T.S.N.S. Narayanan, A. Stephen, Mater. Chem. Phys. 117, 99 (2006)Google Scholar
  9. 9.
    K.P. Han, J.L. Fang, Int. J. Chem. Kinet. 259, 28 (1996)Google Scholar
  10. 10.
    K.L. Lin, J.W. Hang, Mater. Chem. Phys. 204, 76 (2002)Google Scholar
  11. 11.
    J. Sudagar, J. Lian, S. Wei, J. Alloys Compd. 183, 571 (2013)Google Scholar
  12. 12.
    H.W. Xu, J. Brito, O. Sadik, J. Electrochem. Soc. 816, 150 (2003)Google Scholar
  13. 13.
    M. Kunimoto, K. Endo, H. Nakai et al., Electrochim. Acta 311, 100 (2013)Google Scholar
  14. 14.
    R. Ambat, W. Zhou, Surf. Coat. Technol. 124, 179 (2004)Google Scholar
  15. 15.
    J. Li, P.A. Kohl, J. Electrochem. Soc. 631, 149 (2002)Google Scholar
  16. 16.
    U.S. Mohanty, B.C. Tripathy, S.C. Das et al., Metall. Mater. Trans. B. 737, 36 (2005)Google Scholar
  17. 17.
    K.P. Han, J.L. Fang, Metal Finish. 73, 95 (1997)Google Scholar
  18. 18.
    A. Hung, J. Electrochem. Soc. 1047, 132 (1985)Google Scholar
  19. 19.
    N.V. Sotskaya, E.I. Ryabinina, T.A. Kravchenko et al., Prot. Met. 250, 39 (2003)Google Scholar
  20. 20.
    N.V. Sotskaya, E.I. Ryabinina, T.A. Kravchenko et al., Prot. Met. 245, 39 (2003)Google Scholar
  21. 21.
    W.J. Cheong, B.L. Luana, D.W. Shoesmith, Appl. Surf. Sci. 282, 229 (2004)Google Scholar
  22. 22.
    H.P. Liu, N. Li, S.F. Bi et al., Thin Solid Films. 1883, 516 (2008)Google Scholar
  23. 23.
    N.M. Miao, J.J. Jiang, W.P. Wu, J. Nanomater. (2018) Google Scholar
  24. 24.
    W.P. Wu, J.J. Jiang, Appl. Nanosci. 325, 7 (2017)Google Scholar
  25. 25.
    G. Oskam, J.G. Long, A. Natarajan et al., J. Phys. D 1927, 31 (1998)Google Scholar
  26. 26.
    J. Yoo, G. Yu, J. Yi, Solar Energy Mater. Solar Cells. 2, 95 (2011)Google Scholar
  27. 27.
    A.A. Ashtiani, S. Faraji, S.A. Iranagh et al., Arab. J. Chem. 1541, 10 (2017)Google Scholar
  28. 28.
    Y.C. Zhang, N.H. Ru, X. Rong, Electroplating Handbook (National Defence Industry Press, Beijing, 2011)Google Scholar
  29. 29.
    H.F. Hsu, C.L. Tsai, C.W. Lee et al., Thin Solid Films 4786, 517 (2009)Google Scholar
  30. 30.
    N. Takano, N. Hosoda, T. Yamada, T. Osaka, J. Electrochem. Soc. 1407, 146 (1999)Google Scholar
  31. 31.
    D. Niwa, T. Homma, T. Osaka, J. Phys. Chem. B. 9900, 108 (2004)Google Scholar
  32. 32.
    A.R. Rahimi, H. Modarres, M. Abdouss, Surf. Eng. 367, 25 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrochemistry and Corrosion Laboratory, School of Mechanical EngineeringChangzhou UniversityChangzhouChina
  2. 2.Department of PhysicsChangshu Institute of TechnologyChangshuChina
  3. 3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina
  4. 4.Jiangsu Shunfeng Photovoltaic Technology Co., LtdChangzhouChina
  5. 5.Zhenjiang Arf Special Coating Technology Co., LtdZhenjiangChina

Personalised recommendations